Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations

被引:125
|
作者
Agarwal, Ravi P. [1 ]
de Andrade, Bruno [2 ,3 ]
Cuevas, Claudio [3 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[3] Univ Fed Pernambuco, Dept Matemat, BR-50540740 Recife, PE, Brazil
关键词
Fractional order differential equations; Weighted pseudo-almost periodicity; Mild solutions; Partial evolution equations; CAUCHY-PROBLEM; EXISTENCE; UNIQUENESS;
D O I
10.1016/j.nonrwa.2010.01.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and uniqueness of a weighted pseudo-almost periodic (mild) solution to the semilinear fractional equation delta(alpha)(t)u = Au + delta(alpha-1)(t)f(center dot, u), 1 < alpha < 2, where A is a linear operator of sectorial negative type. This article also deals with the existence of these types of solutions to abstract partial evolution equations. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3532 / 3554
页数:23
相关论文
共 50 条