Multiple imputations and the missing censoring indicator model

被引:9
|
作者
Subramanian, Sundarraman [1 ]
机构
[1] New Jersey Inst Technol, Dept Math Sci, Ctr Appl Math & Stat, Newark, NJ 07102 USA
关键词
Asymptotic normality; Functional delta method; Lindeberg's condition; Maximum likelihood; Missing at random; Model-based resampling; BOOTSTRAP APPROXIMATIONS; EFFICIENT ESTIMATION; SURVIVAL-RATE; REGRESSION; CHECKS; INFERENCE;
D O I
10.1016/j.jmva.2010.08.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Semiparametric random censorship (SRC) models (Dikta, 1998) provide an attractive framework for estimating survival functions when censoring indicators are fully or partially available. When there are missing censoring indicators (MCIs), the SRC approach employs a model-based estimate of the conditional expectation of the censoring indicator given the observed time, where the model parameters are estimated using only the complete cases. The multiple imputations approach, on the other hand, utilizes this model-based estimate to impute the missing censoring indicators and form several completed data sets. The Kaplan-Meier and SRC estimators based on the several completed data sets are averaged to arrive at the multiple imputations Kaplan-Meier (MIKM) and the multiple imputations SRC (MISRC) estimators. While the MIKM estimator is asymptotically as efficient as or less efficient than the standard SRC-based estimator that involves no imputations, here we investigate the performance of the MISRC estimator and prove that it attains the benchmark variance set by the SRC-based estimator. We also present numerical results comparing the performances of the estimators under several misspecified models for the above mentioned conditional expectation. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:105 / 117
页数:13
相关论文
共 50 条
  • [1] The missing censoring indicator model and the smoothed bootstrap
    Subramanian, Sundarraman
    Bean, Derek
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 53 (02) : 471 - 476
  • [2] Doubly robust semiparametric estimation for the missing censoring indicator model
    Subramanian, Sundarraman
    Bandyopadhyay, Dipankar
    [J]. STATISTICS & PROBABILITY LETTERS, 2010, 80 (7-8) : 621 - 630
  • [3] Asymptotically efficient estimation of a survival function in the missing censoring indicator model
    Subramanian, S
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2004, 16 (05) : 797 - 817
  • [4] Multiple imputations for missing data: a simulation with epidemiological data
    Nunes, Luciana Neves
    Klueck, Mariza Machado
    Guimaraes Fachel, Jandyra Maria
    [J]. CADERNOS DE SAUDE PUBLICA, 2009, 25 (02): : 268 - 278
  • [5] GPAbin: unifying visualizations of multiple imputations for missing values
    Nienkemper-Swanepoel, J.
    le Roux, N. J.
    Gardner-Lubbe, S.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (06) : 2666 - 2685
  • [6] Geometric morphometry, missing values, and multiple imputations.
    Petersen, HC
    Ahlström, T
    Vach, W
    [J]. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2006, : 146 - 146
  • [7] Missing data, part 5. Introduction to multiple imputations
    Pham, Tra My
    Pandis, Nikolaos
    White, Ian R.
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2022, 162 (04) : 581 - 583
  • [8] Adaptive multiple imputations of missing values using the class center
    Kritbodin Phiwhorm
    Charnnarong Saikaew
    Carson K. Leung
    Pattarawit Polpinit
    Kanda Runapongsa Saikaew
    [J]. Journal of Big Data, 9
  • [9] Inverse probability weighting or multiple imputations for nonmonotone missing data?
    Ross, Rachael
    Cole, Stephen
    Westreich, Daniel
    Daniels, Julie
    Stringer, Jeffrey
    Edwards, Jessie
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2022, 31 : 3 - 3
  • [10] Adaptive multiple imputations of missing values using the class center
    Phiwhorm, Kritbodin
    Saikaew, Charnnarong
    Leung, Carson K.
    Polpinit, Pattarawit
    Saikaew, Kanda Runapongsa
    [J]. JOURNAL OF BIG DATA, 2022, 9 (01)