Sampling Rate Conversion in the Frequency Domain

被引:12
|
作者
Bi, Guoan [1 ]
Mitra, Sanjit K. [2 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[2] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
关键词
INTERPOLATION; ALGORITHMS; FFT; DFT;
D O I
10.1109/MSP.2011.940413
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sampling rate conversion (SRC) is usually performed in the time domain by using the operations of up-sampling, filtering, and down-sampling. However, it is also possible to perform the SRC in the frequency domain by formulating the desired spectrum from the spectrum of an input signal. This article shows how to perform SRC for both integer- and fractional-rate conversion by manipulating the discrete Fourier transform (DFT), implemented using the fast Fourier transform (FFT), of a time-domain signal. The analysis on error performance and the required computational complexities show that by using the FFT, for both short and long input sequences, improvements in conversion accuracy is achieved at reduced computational costs. © 2006 IEEE.
引用
收藏
页码:140 / 144
页数:5
相关论文
共 50 条
  • [1] Autocalibrated Sampling Rate Conversion in the Frequency Domain
    Zhao, Lifan
    Li, Xiumei
    Wang, Lu
    Bi, Guoan
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (03) : 101 - 106
  • [2] Analysis of sampling-rate conversion in the fractional Fourier domain
    Deng, Bing
    Tao, Ran
    Zhang, Hui-Yun
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2006, 34 (12): : 2190 - 2194
  • [3] Sampling Rate Conversion in the Discrete Linear Canonical Transform Domain
    Zhuo, Z.
    Zhong, N.
    Zhan, X.
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING, 2016, 29 (05): : 615 - 620
  • [4] Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain
    Tao, Ran
    Deng, Bing
    Zhang, Wei-Qiang
    Wang, Yue
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (01) : 158 - 171
  • [5] On the Time Domain Error Caused By the Frequency Domain Sampling Rate in a Reverberation Chamber
    Xu, Jianhua
    Zhao, Yongjiu
    Xu, Qian
    [J]. IEEE ACCESS, 2019, 7 : 78223 - 78227
  • [6] An effect of sampling rate to the time and frequency domain analysis of pulse rate variability
    Yang Y.L.
    Shin H.
    [J]. Shin, Hangsik (hangsik.shin@jnu.ac.kr), 1600, Korean Institute of Electrical Engineers (65): : 1247 - 1251
  • [7] Sampling Rate Conversion
    Vitasek, Jan
    [J]. ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2010, 8 (01) : 10 - 14
  • [8] Lattices sampling and sampling rate conversion of multidimensional bandlimited signals in the linear canonical transform domain
    Wei, Deyun
    Yang, Wenwen
    Li, Yuan-Min
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (13): : 7571 - 7607
  • [9] MULTIDIMENSIONAL SAMPLING RATE CONVERSION
    REUTER, T
    [J]. AEU-ARCHIV FUR ELEKTRONIK UND UBERTRAGUNGSTECHNIK-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 1986, 40 (04): : 219 - 224
  • [10] Fractional sampling rate conversion in the 3rd order cumulant domain and applications
    Delopoulos, A
    Rangoussi, M
    Kalogeras, D
    [J]. DSP 97: 1997 13TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2: SPECIAL SESSIONS, 1997, : 157 - 160