Self-dual gravitational instantons in conformal gravity: Conserved charges and thermodynamics

被引:8
|
作者
Corral, Cristobal [1 ]
Giribet, Gaston [2 ,3 ]
Olea, Rodrigo [4 ]
机构
[1] Univ Arturo Prat, Fac Ciencias, Inst Ciencias Exactas & Nat, Ave Arturo Prat Chacon 2120, Iquique 1110939, Chile
[2] Univ Buenos Aires, Phys Dept, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[3] IFIBA CONICEE, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[4] Univ Andres Bello, Fac Ciencias Exactas, Dept Ciencias Fis, Sazie 2212,Piso 7, Santiago, Chile
关键词
HIGHER-SPIN FIELDS; WEYL GRAVITY; SUPERGRAVITY; SPACE; MONOPOLES; ENTROPY; GAUGE;
D O I
10.1103/PhysRevD.104.064026
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study non-Einstein Bach-flat gravitational instanton solutions that can be regarded as the generalization of the Taub-NUT/bolt and Eguchi-Hanson solutions of Einstein gravity to conformal gravity. These solutions include non-Einstein spaces which are either asymptotically locally flat spacetimes or asymptotically locally anti-de Sitter (AlAdS). Nevertheless, solutions with different asymptotic conditions exist: we find geometries that present a weakened AlAdS asymptotia, exhibiting the typical low decaying mode of conformal gravity. This permits us to identify the simple Neumann boundary condition that, as it happens in the asymptotically AdS sector, selects the Einstein solution out of the solutions of conformal gravity. All the geometries present nonvanishing Hirzebruch signature and Euler characteristic, being single-centered instantons. We compute the topological charges as well as the Noether charges of the Taub-NUT/bolt and Eguchi-Hanson spacetimes, which happen to be finite. This enables us to study the thermodynamic properties of these geometries.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Self-Dual Conformal Gravity
    Dunajski, Maciej
    Tod, Paul
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (01) : 351 - 373
  • [2] Self-Dual Conformal Gravity
    Maciej Dunajski
    Paul Tod
    [J]. Communications in Mathematical Physics, 2014, 331 : 351 - 373
  • [3] LOCALLY HERMIT-EINSTEIN, SELF-DUAL GRAVITATIONAL INSTANTONS
    PRZANOWSKI, M
    [J]. ACTA PHYSICA POLONICA B, 1983, 14 (08): : 625 - 627
  • [4] Self-dual gravitational instantons and geometric flows of all Bianchi types
    Petropoulos, P. M.
    Pozzoli, V.
    Siampos, K.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (24)
  • [5] PARTIAL-DIFFERENTIAL-EQUATION-KAHLERIAN MANIFOLDS AND SELF-DUAL GRAVITATIONAL INSTANTONS
    PRZANOWSKI, M
    [J]. PHYSICS LETTERS A, 1985, 110 (06) : 295 - 297
  • [6] Self-dual gravity
    Krasnov, Kirill
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (09)
  • [7] ON SELF-DUAL GRAVITY
    GRANT, JDE
    [J]. PHYSICAL REVIEW D, 1993, 48 (06): : 2606 - 2612
  • [8] Moduli Spaces of Self-Dual Connections over Asymptotically Locally Flat Gravitational Instantons
    Gábor Etesi
    Marcos Jardim
    [J]. Communications in Mathematical Physics, 2009, 288 : 799 - 800
  • [9] Moduli Spaces of Self-Dual Connections over Asymptotically Locally Flat Gravitational Instantons
    Gábor Etesi
    Marcos Jardim
    [J]. Communications in Mathematical Physics, 2008, 280
  • [10] Moduli spaces of self-dual connections over asymptotically locally flat gravitational instantons
    Etesi, Gabor
    Jardim, Marcos
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 280 (02) : 285 - 313