Iterative state and parameter estimation algorithms for bilinear state-space systems by using the block matrix inversion and the hierarchical principle

被引:5
|
作者
Liu, Siyu [1 ]
Ding, Feng [1 ]
Yang, Erfu [2 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Jiangsu, Peoples R China
[2] Univ Strathclyde, Robot & Autonomous Syst Grp, Glasgow G1 1XJ, Lanark, Scotland
基金
中国国家自然科学基金;
关键词
Nonlinear system; Bilinear system; Moving data window; Block matrix inversion; Hierarchical identification; Parameter estimation; IDENTIFICATION METHOD;
D O I
10.1007/s11071-021-06914-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper is concerned with the identification of the bilinear systems in the state-space form. The parameters to be identified of the considered systems are coupled with the unknown states, which makes the identification problem difficult. To deal with such a difficulty, the iterative estimation theory is considered to derive the joint parameter and state estimation algorithm. Specifically, a moving data window least squares-based iterative (MDW-LSI) algorithm is derived to estimate the parameters of the systems by using the window data, and the unknown states are estimated by a bilinear state estimator. Furthermore, in order to improve the computational efficiency, a matrix decomposition-based MDW-LSI algorithm and a hierarchical MDW-LSI algorithm are developed according to the block matrix inversion lemma and the hierarchical identification principle. Finally, the computational efficiency is discussed and the numerical examples are employed to test the proposed approaches.
引用
收藏
页码:2183 / 2202
页数:20
相关论文
共 50 条
  • [1] Iterative state and parameter estimation algorithms for bilinear state-space systems by using the block matrix inversion and the hierarchical principle
    Siyu Liu
    Feng Ding
    Erfu Yang
    [J]. Nonlinear Dynamics, 2021, 106 : 2183 - 2202
  • [2] Hierarchical parameter and state estimation for bilinear systems
    Zhang, Xiao
    Ding, Feng
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (02) : 275 - 290
  • [3] Three-stage least squares-based iterative estimation algorithms for bilinear state-space systems based on the bilinear state estimator
    Liu, Siyu
    Zhang, Yanliang
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2020, 34 (10) : 1501 - 1518
  • [4] State observers for bilinear state-space systems
    Zhang, Xiao
    Ding, Feng
    [J]. Kongzhi yu Juece/Control and Decision, 2023, 38 (01): : 274 - 280
  • [5] Recursive parameter and state estimation methods for observability canonical state-space models exploiting the hierarchical identification principle
    Cui, Ting
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (16): : 2538 - 2545
  • [6] State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle
    Zhang, Xiao
    Ding, Feng
    Xu, Ling
    Yang, Erfu
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (12): : 1704 - 1713
  • [7] Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle
    Wang, Xuehai
    Ding, Feng
    [J]. SIGNAL PROCESSING, 2015, 117 : 208 - 218
  • [8] Data filtering-based parameter and state estimation algorithms for state-space systems disturbed by coloured noises
    Cui, Ting
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (09) : 1669 - 1684
  • [9] Recursive and iterative least squares parameter estimation algorithms for observability canonical state space systems
    Ma, Xingyun
    Ding, Feng
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2015, 352 (01): : 248 - 258
  • [10] ISAR Motion Parameter Estimation Using State-Space Modeling
    Adjrad, Mounir
    Woodbridge, Karl
    [J]. 2012 IEEE RADAR CONFERENCE (RADAR), 2012,