Local approach to order continuity in Cesaro function spaces

被引:3
|
作者
Kiwerski, Tomasz [1 ]
Tomaszewski, Jakub [2 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, Prof Z Szafrana 4a, PL-65516 Zielona Gora, Poland
[2] Poznan Univ Tech, Inst Math, Fac Elect Engn, Piotrowo 3A, PL-60965 Poznan, Poland
关键词
Cesaro function spaces; Cesaro-Orlicz function spaces; Cesazo-Lorentz function spaces; Cesaro-Marcinkiewicz function spaces; Order continuity; Local structure of a separated point; ABSTRACT CESARO; INDEXES;
D O I
10.1016/j.jmaa.2017.06.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to present a complete characterization of points of order continuity in abstract Cesko function spaces CX for X being a symmetric function space. Under some additional assumptions mentioned result takes the form (CX)(a) = C(X-a). We also find simple equivalent condition for this equality which in the case of I = [0,1] comes to X not equal L-infinity Furthermore, we prove that X is order continuous if and only if CX is, under assumption that the Cesaro operator is bounded on X. This result is applied to particular spaces, namely: Cesko-Orlicz function spaces, Cesaro-Lorentz function spaces and Cesro-Marcinkiewicz function spaces to get criteria for OC-points. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1636 / 1654
页数:19
相关论文
共 50 条
  • [1] STRUCTURE OF CESARO SECOND ORDER FUNCTION SPACES
    Braha, Naim L.
    [J]. MISKOLC MATHEMATICAL NOTES, 2015, 16 (02) : 705 - 711
  • [2] Multiplication operators on Cesaro second order function spaces
    Ilkhan, Merve
    Demiriz, Serkan
    Kara, Emrah Evren
    [J]. POSITIVITY, 2020, 24 (03) : 605 - 614
  • [3] Structure of Cesaro function spaces'
    Astashkin, Sergei V.
    Maligranda, Lech
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (03): : 329 - 379
  • [4] ALMOST CONTINUITY OF CESARO-VIETORIS FUNCTION
    BROWN, JB
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 49 (01) : 185 - 188
  • [5] Interpolation of Cesaro sequence and function spaces
    Astashkin, Sergey V.
    Maligranda, Lech
    [J]. STUDIA MATHEMATICA, 2013, 215 (01) : 39 - 69
  • [6] INTEGRAL OPERATORS ON CESARO FUNCTION SPACES
    Ho, Kwok-Pun
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (04) : 905 - 915
  • [7] Composition Operators on Cesaro Function Spaces
    Raj, Kuldip
    Pandoh, Suruchi
    Jamwal, Seema
    [J]. JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [8] Multiplication Operators on Cesaro Function Spaces
    Mursaleen, M.
    Aghajani, A.
    Raj, Kuldip
    [J]. FILOMAT, 2016, 30 (05) : 1175 - 1184
  • [9] Cesaro operator of order α on Bloch type spaces
    Naik, Sunanda
    [J]. JOURNAL OF ANALYSIS, 2024,
  • [10] EMBEDDINGS BETWEEN WEIGHTED CESARO FUNCTION SPACES
    Unver, Tugce
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03): : 925 - 942