Limits as p → ∞ of p-Laplacian concave-convex problems

被引:3
|
作者
Charro, Fernando [3 ]
Peral, Ireneo [1 ,2 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] ICMAT, Madrid 28049, Spain
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
Fully nonlinear; Infinity Laplacian; Positive solutions; Multiplicity; EIGENVALUE; FAMILY;
D O I
10.1016/j.na.2011.11.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the behavior as p -> infinity of the sequel of positive weak solutions of the concave-convex problem {-div(|del u|(p-2)del u) = lambda u(q(p)) + u(r(p)) in Omega u > 0 in Omega u = 0 on partial derivative Omega, where Omega subset of R-n is a bounded domain, lambda > 0 and the exponents q, r satisfy lim(p -> infinity) q(p)/p - 1 = Q, lim(p -> infinity) r(p)/p - 1 = R, with 0 < Q < 1 < R. We characterize any positive uniform limit of a sequence of weak solutions of (P) as a viscosity solution of min{|del u(Lambda)| - max{Lambda u(Lambda)(Q), u(Lambda)(R)},- Delta(infinity)u(Lambda) = 0 in Omega. Notice that the limit process decouples the nonlinearity. We obtain existence, nonexistence and global multiplicity of positive viscosity solutions of the limit problem in terms of the parameter Lambda. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2637 / 2659
页数:23
相关论文
共 50 条