ON THE DEFECT OF COMPACTNESS IN SOBOLEV EMBEDDINGS ON RIEMANNIAN MANIFOLDS

被引:0
|
作者
Tintarev, C. [1 ]
机构
[1] Sankt Olofsgatan 66B, Uppsala 75330, Sweden
关键词
Concentration compactness; profile decomposition; weak convergence; Sobolev spaces on manifolds; EXISTENCE;
D O I
10.1090/spmj/1606
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The defect of compactness for an embedding E hooked right arrow F of two Banach spaces is the difference between a weakly convergent sequence in E and its weak limit, taken modulo terms vanishing in F. We discuss the structure of the defect of compactness for (noncompact) Sobolev embeddings on manifolds, giving a brief outline of the theory based on isometry groups, followed by a summary of recent studies of the structure of bounded sequences without invariance assumptions.
引用
收藏
页码:421 / 434
页数:14
相关论文
共 50 条
  • [1] Sobolev embeddings with weights in complete Riemannian manifolds
    Amar, Eric
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (03): : 411 - 435
  • [2] Defect of compactness for Sobolev spaces on manifolds with bounded geometry
    Skrzypczak, Leszek
    Tintarev, Cyril
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2020, 20 (04) : 1665 - 1695
  • [3] COMPACTNESS OF EMBEDDINGS OF SOBOLEV SPACES
    DUC, DM
    DUNG, L
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 40 : 105 - 119
  • [4] A compactness theorem in Riemannian manifolds
    Soylu Y.
    [J]. Journal of Geometry, 2018, 109 (1)
  • [5] Compactness of Sobolev embeddings and decay of norms
    Lang, Jan
    Mihula, Zdenek
    Pick, Lubos
    [J]. STUDIA MATHEMATICA, 2022, 265 (01) : 1 - 36
  • [6] SOBOLEV INEQUALITY ON RIEMANNIAN MANIFOLDS
    WANG MENG Department of Mathematics
    School of Mathematical Sciences
    [J]. Chinese Annals of Mathematics, 2005, (04) : 164 - 171
  • [7] SOBOLEV INEQUALITY ON RIEMANNIAN MANIFOLDS
    CHERRIER, P
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 1979, 103 (04): : 353 - 374
  • [8] Sobolev spaces on Riemannian manifolds
    [J]. Lect Notes Math, (1-106):
  • [9] Sobolev inequality on Riemannian manifolds
    Wang, M
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2005, 26 (04) : 651 - 658
  • [10] Maximal Non-compactness of Sobolev Embeddings
    Lang, Jan
    Musil, Vit
    Olsak, Miroslav
    Pick, Lubos
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (09) : 9406 - 9431