An Extreme Learning Machine Based on Quantum Particle Swarm Optimization and its Application in Handwritten Numeral Recognition

被引:0
|
作者
Sun, Xin [1 ]
Qin, Liangxi [1 ]
机构
[1] Guangxi Univ, Sch Comp Elect & Informat, Nanning 530004, Peoples R China
关键词
extreme learning machine; network structure; Quantum Particle Swarm Optimization; prediction accuracy; Handwritten Numeral Recognition;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Extreme Learning Machine algorithm was proposed by Prof. Guangbin Huang in 2004. It is a single hidden layer feedforward neural network. It has attracted extensive research of many scholars because of its fast speed, simple implementation and good generalization performance. In this paper, Quantum Particle Swarm Optimization was introduced to extreme learning machine to solve the problem of complex network structure which is caused by random assignments to the input weights and biases of hidden nodes. The QPSO is used in the process to select the input weights and biases instead of random assignment. Then extreme learning machine uses the result produced by QPSO to train the network. Thus can improve the prediction accuracy and response speed to unknown data and gain a more compact network structure. The proposed method is used in handwritten numeral recognition application in the end. And it gets an approving performance.
引用
收藏
页码:323 / 326
页数:4
相关论文
共 50 条
  • [1] Optimization of CNN and Its Application in Handwritten Numeral Recognition
    Zhang, Zhi-jia
    Li, Yuan-yuan
    Jia, Meng-si
    Zhong, Ling
    Yu, Ya-jie
    2016 INTERNATIONAL CONFERENCE ON INFORMATICS, MANAGEMENT ENGINEERING AND INDUSTRIAL APPLICATION (IMEIA 2016), 2016, : 26 - 30
  • [2] Support Vector Machine and its application in handwritten numeral recognition
    Zhao, B
    Liu, Y
    Xia, SW
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS: PATTERN RECOGNITION AND NEURAL NETWORKS, 2000, : 720 - 723
  • [3] Evolutionary extreme learning machine - Based on particle swarm optimization
    Xu, You
    Shu, Yang
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 644 - 652
  • [4] An Improved Extreme Learning Machine Based on Particle Swarm Optimization
    Han, Fei
    Yao, Hai-Fen
    Ling, Qing-Hua
    BIO-INSPIRED COMPUTING AND APPLICATIONS, 2012, 6840 : 699 - +
  • [5] An improved evolutionary extreme learning machine based on particle swarm optimization
    Han, Fei
    Yao, Hai-Fen
    Ling, Qing-Hua
    NEUROCOMPUTING, 2013, 116 : 87 - 93
  • [6] Local Coupled Extreme Learning Machine Based on Particle Swarm Optimization
    Guo, Hongli
    Li, Bin
    Li, Wei
    Qiao, Fengjuan
    Rong, Xuewen
    Li, Yibin
    ALGORITHMS, 2018, 11 (11)
  • [7] Quantum Particle Swarm Optimization Based Convolutional Neural Network for Handwritten Script Recognition
    Sharma, Reya
    Kaushik, Baijnath
    Gondhi, Naveen Kumar
    Tahir, Muhammad
    Rahmani, Mohammad Khalid Imam
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03): : 5855 - 5873
  • [8] Forecasting Daily Runoff by Extreme Learning Machine Based on Quantum-Behaved Particle Swarm Optimization
    Niu, Wen-jing
    Feng, Zhong-kai
    Cheng, Chun-tian
    Zhou, Jian-zhong
    JOURNAL OF HYDROLOGIC ENGINEERING, 2018, 23 (03)
  • [9] Extreme Learning Machine Based on Particle Swarm Optimization for Estimation of Reference Evapotranspiration
    Liu, Tianfeng
    Ding, Yongsheng
    Cai, Xin
    Zhu, Yifeng
    Zhang, Xiangfei
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 4567 - 4572
  • [10] An Improved Evolutionary Extreme Learning Machine Based on Multiobjective Particle Swarm Optimization
    Jiang, Jing
    Han, Fei
    Ling, Qing-Hua
    Su, Ben-Yue
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2018, PT III, 2018, 10956 : 1 - 6