An Ontology-Enhanced Hybrid Approach to Aspect-Based Sentiment Analysis

被引:6
|
作者
de Heij, Daan [1 ]
Troyanovsky, Artiom [1 ]
Yang, Cynthia [1 ]
Scharff, Milena Zychlinsky [1 ]
Schouten, Kim [1 ]
Frasincar, Flavius [1 ]
机构
[1] Erasmus Univ, POB 1738, NL-3000 DR Rotterdam, Netherlands
关键词
D O I
10.1007/978-3-319-68786-5_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Numerous reviews are available online regarding a wide range of products and services. Aspect-Based Sentiment Analysis aims at extracting sentiment polarity per aspect instead of only the whole product or service. In this work, we use restaurant data from Task 5 of SemEval 2016 to investigate the potential of ontologies to improve the aspect sentiment classification produced by a support vector machine. We achieve this by combining a standard bag-of-words model with external dictionaries and an ontology. Our ontology-enhanced methods yield significantly better performance compared to the methods without ontology features: we obtain a significantly higher F-1 score and require less than 60% of the training data for equal performance.
引用
收藏
页码:338 / 345
页数:8
相关论文
共 50 条
  • [1] Ontology-Enhanced Aspect-Based Sentiment Analysis
    Schouten, Kim
    Frasincar, Flavius
    de Jong, Franciska
    WEB ENGINEERING (ICWE 2017), 2017, 10360 : 302 - 320
  • [2] Data Augmentation in a Hybrid Approach for Aspect-Based Sentiment Analysis
    Liesting, Tomas
    Frasincar, Flavius
    Trusca, Maria Mihaela
    36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, : 828 - 835
  • [3] Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis
    Hochstenbach, Ron
    Frasincar, Flavius
    Trusca, Maria Mihaela
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2021, PT II, 2021, 13081 : 291 - 305
  • [4] A Hybrid Approach for Aspect-Based Sentiment Analysis Using a Lexicalized Domain Ontology and Attentional Neural Models
    Wallaart, Olaf
    Frasincar, Flavius
    SEMANTIC WEB, ESWC 2019, 2019, 11503 : 363 - 378
  • [5] Hybrid sentiment classification on twitter aspect-based sentiment analysis
    Zainuddin, Nurulhuda
    Selamat, Ali
    Ibrahim, Roliana
    APPLIED INTELLIGENCE, 2018, 48 (05) : 1218 - 1232
  • [6] Improving Twitter Aspect-Based Sentiment Analysis Using Hybrid Approach
    Zainuddin, Nurulhuda
    Selamat, Ali
    Ibrahim, Roliana
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2016, PT I, 2016, 9621 : 151 - 160
  • [7] Hybrid sentiment classification on twitter aspect-based sentiment analysis
    Nurulhuda Zainuddin
    Ali Selamat
    Roliana Ibrahim
    Applied Intelligence, 2018, 48 : 1218 - 1232
  • [8] Aspect-Based Sentiment Analysis Approach with CNN
    Mulyo, Budi M.
    Widyantoro, Dwi H.
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS (EECSI 2018), 2018, : 142 - 147
  • [9] Enhanced Hindi Aspect-based Sentiment Analysis using Class Balancing Approach
    Ganganwar V.
    Rajalakshmi R.
    International Journal of Information Technology, 2023, 15 (7) : 3527 - 3532
  • [10] Review-Level Aspect-Based Sentiment Analysis Using an Ontology
    de Kok, Sophie
    Punt, Linda
    van den Puttelaar, Rosita
    Ranta, Karoliina
    Schouten, Kim
    Frasincar, Flavius
    33RD ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2018, : 315 - 322