Probabilistic Standard Cell Modeling Considering Non-Gaussian Parameters and Correlations

被引:0
|
作者
Lange, Andre [1 ]
Sohrmann, Christoph [1 ]
Jancke, Roland [1 ]
Haase, Joachim [1 ]
Lorenz, Ingolf [2 ]
Schlichtmann, Ulf [3 ]
机构
[1] Fraunhofer Inst Integrated Circuits, Design Automat Div, Dresden, Germany
[2] GLOBALFOUNDRIES Inc, Dresden, Germany
[3] Tech Univ Munich, D-80290 Munich, Germany
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Variability continues to pose challenges to integrated circuit design. With statistical static timing analysis and high-yield estimation methods, solutions to particular problems exist, but they do not allow a common view on performance variability including potentially correlated and non-Gaussian parameter distributions. In this paper, we present a probabilistic approach for variability modeling as an alternative: model parameters are treated as multi-dimensional random variables. Such a fully multivariate statistical description formally accounts for correlations and non-Gaussian random components. Statistical characterization and model application are introduced for standard cells and gate-level digital circuits. Example analyses of circuitry in a 28 nm industrial technology illustrate the capabilities of our modeling approach.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] NON-GAUSSIAN VELOCITY CORRELATIONS IN FLUIDS
    BALUCANI, U
    TOGNETTI, V
    VALLAURI, R
    GRIGOLINI, P
    MARIN, P
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1982, 49 (03): : 181 - 190
  • [2] Phase correlations in non-Gaussian fields
    Matsubara, T
    [J]. ASTROPHYSICAL JOURNAL, 2003, 591 (02): : L79 - L82
  • [3] Non-Gaussian correlations outside the horizon
    Weinberg, Steven
    [J]. PHYSICAL REVIEW D, 2008, 78 (12):
  • [4] Multivariate Modeling of Variability Supporting Non-Gaussian and Correlated Parameters
    Lange, Andre
    Sohrmann, Christoph
    Jancke, Roland
    Haase, Joachim
    Cheng, Binjie
    Asenov, Asen
    Schlichtmann, Ulf
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2016, 35 (02) : 197 - 210
  • [5] Hybrid Reliability Analysis Method for Electromagnetic Design Problems with Non-Gaussian Probabilistic Parameters
    Kang, Byungsu
    Kim, Dong-Wook
    Cho, Hyunkyoo
    Choi, K. K.
    Kim, Dong-Hun
    [J]. 2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,
  • [6] Hybrid Reliability Analysis Method for Electromagnetic Design Problems With Non-Gaussian Probabilistic Parameters
    Kang, Byungsu
    Kim, Dong-Wook
    Cho, Hyunkyoo
    Choi, K. K.
    Kim, Dong-Hun
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (06)
  • [7] EXOGENOUS MODELING OF NON-GAUSSIAN CLUTTER
    CONTE, E
    GALATI, G
    LONGO, M
    [J]. JOURNAL OF THE INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS, 1987, 57 (04): : 151 - 155
  • [8] Non-gaussian Bayesian geostatistical modeling
    Palacios, M. Blanca
    Steel, Mark F. J.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) : 604 - 618
  • [9] Considering Uncertain Parameters in Non-Gaussian Estimation for Single-Target and Multitarget Tracking
    McCabe, James S.
    DeMars, Kyle J.
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2017, 40 (09) : 2138 - 2150
  • [10] NON-GAUSSIAN SIGNAL PROBABILISTIC MODEL AND ITS CHARACTERISTICS
    MELITITSKIY, VA
    AKINSHIN, NS
    MIKHAYLOV, AV
    [J]. TELECOMMUNICATIONS AND RADIO ENGINEERING, 1983, 37-8 (09) : 93 - 95