EFFICIENT BATCH-MODE ACTIVE LEARNING OF RANDOM FOREST

被引:0
|
作者
Nguyen, Hieu T. [1 ]
Yadegar, Joseph [1 ]
Kong, Bailey [1 ]
Wei, Hai [1 ]
机构
[1] UtopiaCompression Corp, Los Angeles, CA USA
关键词
active learning; in-situ learning; adaptive pattern recognition; incremental random forest;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Active learning is a useful tool for in-situ learning and adaptive classification systems. While traditional active learning is focused mostly on the single-sample mode, the batch mode of active learning is more interactions efficient. This paper proposes a computationally efficient approach for maximizing the joint entropy of a batch of samples and thereby attaining the maximal information gain and minimizing information redundancy. Combining with an incremental random forest, an efficient active learning algorithm is developed. The algorithm is applied to adaptive classification of underwater mines, and exhibits superior performance over the naive batch mode of active learning. Performance evaluation results for public machine learning datasets are also shown.
引用
收藏
页码:596 / 599
页数:4
相关论文
共 50 条
  • [1] Efficient Transport Simulation With Restricted Batch-Mode Active Learning
    Antunes, Francisco
    Ribeiro, Bernardete
    Pereira, Francisco C.
    Gomes, Rui
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 19 (11) : 3642 - 3651
  • [2] Ranked batch-mode active learning
    Cardoso, Thiago N. C.
    Silva, Rodrigo M.
    Canuto, Sergio
    Moro, Mirella M.
    Goncalves, Marcos A.
    [J]. INFORMATION SCIENCES, 2017, 379 : 313 - 337
  • [3] Batch-Mode Active Learning for Traffic Sign Recognition
    Nienhueser, Dennis
    Zoellner, J. Marius
    [J]. 2013 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2013, : 541 - 546
  • [4] Batch-Mode Active Learning via Error Bound Minimization
    Gu, Quanquan
    Zhang, Tong
    Han, Jiawei
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2014, : 300 - 309
  • [5] NimbleLearn: A Scalable and Fast Batch-mode Active Learning Approach
    Kong, Ruoyan
    Qiu, Zhanlong
    Liu, Yang
    Zhao, Qi
    [J]. 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 350 - 359
  • [6] A novel batch-mode active learning method for SVM classifier
    [J]. Liu, K. (liukang1112@gmail.com), 1600, Binary Information Press, Flat F 8th Floor, Block 3, Tanner Garden, 18 Tanner Road, Hong Kong (09):
  • [7] Efficient Batch-Mode Reinforcement Learning Using Extreme Learning Machines
    Liu, Jiahang
    Zuo, Lei
    Xu, Xin
    Zhang, Xinglong
    Ren, Junkai
    Fang, Qiang
    Liu, Xinwang
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (06): : 3664 - 3677
  • [8] Batch-Mode Active Learning for Technology-Assisted Review
    Saha, Tanay Kumar
    Al Hasan, Mohammad
    Burgess, Chandler
    Habib, Md Ahsan
    Johnson, Jeff
    [J]. PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 1134 - 1143
  • [9] A novel batch-mode active learning method for SVM classifier
    Liu, Kang
    Qian, Xu
    [J]. Journal of Information and Computational Science, 2012, 9 (16): : 5077 - 5084
  • [10] Efficient post-earthquake reconnaissance planning using adaptive batch-mode active learning
    Cheraghi, Amirhossein
    Wang, Yinhu
    Markovic, Nikola
    Ou, Ge
    [J]. ADVANCED ENGINEERING INFORMATICS, 2024, 60