The Effect of Pore-Scale Two-Phase Flow on Mineral Reaction Rates

被引:7
|
作者
Li, Pei [1 ]
Deng, Hang [1 ]
Molins, Sergi [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Geosci Div, Berkeley, CA 94720 USA
来源
FRONTIERS IN WATER | 2022年 / 3卷
关键词
multiphase reactive transport; pore-scale; reaction rate; gas bubble; roughness; NUMERICAL-SIMULATION; POROUS-MEDIA; SPECIES TRANSFER; DISPLACEMENT MECHANISMS; FLUID INTERFACES; HAINES JUMPS; TRANSPORT; DISSOLUTION; VOLUME; MIGRATION;
D O I
10.3389/frwa.2021.734518
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
In various natural and engineered systems, mineral-fluid interactions take place in the presence of multiple fluid phases. While there is evidence that the interplay between multiphase flow processes and reactions controls the evolution of these systems, investigation of the dynamics that shape this interplay at the pore scale has received little attention. Specifically, continuum scale models rarely consider the effect of multiphase flow parameters on mineral reaction rates or apply simple corrections as a function of the reactive surface area or saturation of the aqueous phase, without developing a mechanistic understanding of the pore-scale dynamics. In this study, we developed a framework that couples the two-phase flow simulator of OpenFOAM (open field operation and manipulation) with the geochemical reaction capability of CrunchTope to examine pore-scale dynamics of two phase flow and their impacts on mineral reaction rates. For our investigations, flat 2D channels and single sine wave channels were used to represent smooth and rough geometries. Calcite dissolution in these channels was quantified with single phase flow and two phase flow at a range of velocities. We observed that the bulk calcite dissolution rates were not only affected by the loss of reactive surface area as it becomes occupied by the non-reactive non-aqueous phase, but also largely influenced by the changes in local velocity profiles, e.g., recirculation zones, due to the presence of the non-aqueous phase. The extent of the changes in reaction rates in the two-phase systems compared to the corresponding single phase system is dependent on the flow rate (i.e., capillary number) and channel geometry, and follows a non-monotonic relationship with respect to aqueous saturation. The pore-scale simulation results highlight the importance of interfacial dynamics in controlling mineral reactions and can be used to better constrain reaction rate descriptions in multiphase continuum scale models. These results also emphasize the need for experimental studies that underpin the development of mechanistic models for multiphase flow in reactive systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Anomalous Dispersion in Pore-Scale Simulations of Two-Phase Flow
    Dimetre Triadis
    Fei Jiang
    Diogo Bolster
    Transport in Porous Media, 2019, 126 : 337 - 353
  • [2] Pore-scale simulation of two-phase flow in biporous media
    Nimvari, Majid Eshagh
    Persoons, Tim
    Gibbons, Michael
    PHYSICS OF FLUIDS, 2024, 36 (10)
  • [3] Anomalous Dispersion in Pore-Scale Simulations of Two-Phase Flow
    Triadis, Dimetre
    Jiang, Fei
    Bolster, Diogo
    TRANSPORT IN POROUS MEDIA, 2019, 126 (02) : 337 - 353
  • [4] Pore-Scale Characterization of Two-Phase Flow Using Integral Geometry
    Liu, Zhishang
    Herring, Anna
    Arns, Christoph
    Berg, Steffen
    Armstrong, Ryan T.
    TRANSPORT IN POROUS MEDIA, 2017, 118 (01) : 99 - 117
  • [5] Pore-Scale Perspective of Gas/Water Two-Phase Flow in Shale
    Zhang, Tao
    Javadpour, Farzam
    Li, Jing
    Zhao, Yulong
    Zhang, Liehui
    Li, Xiangfang
    SPE JOURNAL, 2021, 26 (02): : 828 - 846
  • [6] On upscaling pore-scale models for two-phase flow with evolving interfaces
    Sharmin, Sohely
    Bringedal, Carina
    Pop, Iuliu Sorin
    Advances in Water Resources, 2020, 142
  • [7] Pore-Scale Characterization of Two-Phase Flow Using Integral Geometry
    Zhishang Liu
    Anna Herring
    Christoph Arns
    Steffen Berg
    Ryan T. Armstrong
    Transport in Porous Media, 2017, 118 : 99 - 117
  • [8] A PORE-SCALE APPROACH OF TWO-PHASE FLOW IN GRANULAR POROUS MEDIA
    Yuan, C.
    Chareyre, B.
    Darve, F.
    PARTICLE-BASED METHODS IV-FUNDAMENTALS AND APPLICATIONS, 2015, : 957 - 968
  • [9] On upscaling pore-scale models for two-phase flow with evolving interfaces
    Sharmin, Sohely
    Bringedal, Carina
    Pop, Iuliu Sorin
    ADVANCES IN WATER RESOURCES, 2020, 142
  • [10] Pore-scale network simulation of NMR response in two-phase flow
    Talabi, Olumide
    Blunt, Martin J.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2010, 72 (1-2) : 1 - 9