Independent component analysis: source assessment and separation, a Bayesian approach

被引:36
|
作者
Roberts, SJ [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, Neural Syst Res Grp, London SW7 2BT, England
来源
关键词
independent component analysis; source separation; Bayesian analysis;
D O I
10.1049/ip-vis:19981928
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The author presents a method of independent component analysis which assesses the most probable number of source sequences from a larger number of observed sequences and estimates the unknown source sequences and mixing matrix. The estimation of the number of true sources is regarded as a model-order estimation problem and is tackled under a Bayesian paradigm. The method is shown to give good results on both synthetic and real data.
引用
收藏
页码:149 / 154
页数:6
相关论文
共 50 条
  • [1] Blind Source Separation Based on Variational Bayesian Independent Component Analysis
    Wang, Chunli
    Xu, Yan
    Tang, Minan
    Wang, Lei
    [J]. PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 1614 - 1618
  • [2] A semiparametric approach to source separation using independent component analysis
    Eloyan, Ani
    Ghosh, Sujit K.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 58 : 383 - 396
  • [3] Blind source separation and independent component analysis
    Puntonet, Carlos G.
    Lang, Elmar W.
    [J]. NEUROCOMPUTING, 2006, 69 (13-15) : 1413 - 1413
  • [4] Independent Component Analysis and Blind Source Separation
    Barros, Allan Kardec
    Principe, Jose Carlos
    Erdogmus, Deniz
    [J]. SIGNAL PROCESSING, 2007, 87 (08) : 1817 - 1818
  • [5] Application of independent component analysis for sound source separation
    Tan, Chin An
    Gupta, Arvind
    Li, Shaungqing
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCE AND INFORMATION IN ENGINEERING CONFERENCE, VOL 1, PTS A-C, 2008, : 299 - 305
  • [6] Audio source separation based on independent component analysis
    Makino, S
    Araki, S
    Mukai, R
    Sawada, H
    [J]. 2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 5, PROCEEDINGS, 2004, : 668 - 671
  • [7] Separation of Multiplicative Image Components by Bayesian Independent Component Analysis
    Mehrjou, Arash
    Araabi, Babak Nadjar
    Hosseini, Reshad
    [J]. 2015 2ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND IMAGE ANALYSIS (IPRIA), 2015,
  • [8] A Bayesian approach to source separation
    Mohammad-Djafari, A
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2001, 567 : 221 - 244
  • [9] Blind Source Separation Combining Independent Component Analysis and Beamforming
    Hiroshi Saruwatari
    Satoshi Kurita
    Kazuya Takeda
    Fumitada Itakura
    Tsuyoki Nishikawa
    Kiyohiro Shikano
    [J]. EURASIP Journal on Advances in Signal Processing, 2003
  • [10] Blind source separation combining independent component analysis and beamforming
    Saruwatari, H
    Kurita, S
    Takeda, K
    Itakura, F
    Nishikawa, T
    Shikano, K
    [J]. EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2003, 2003 (11) : 1135 - 1146