Convex rearrangements of Gaussian processes

被引:0
|
作者
Davydov, Y [1 ]
Thilly, E [1 ]
机构
[1] Univ Sci & Technol Lille, UFR Math M2, CNRS, FRE 2222,Lab Stat & Probabil, F-59655 Villeneuve Dascq, France
关键词
Gaussian process; convex rearrangements; p-variations; index of fractality;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the asymptotic, behavior of convex rearrangements for regularizations of paths of Gaussian processes with stationary increments, and we use the concentration principle to prove the almost sure convergence of these rearrangements to a nonrandom convex line, the so-called Lorentz curve, corresponding to the standard Gaussian law. Moreover, we obtain the same type of result for the Gaussian bridges of such processes. We also discuss relations with the recent results of Azais and Wschebor about the almost sure weak convergence of oscillations of Gaussian processes. As an application of our basic theorem we prove a theorem of Baxter type for p-variations of the paths and introduce a new family of consistent estimators of the fractal index.
引用
收藏
页码:219 / 235
页数:17
相关论文
共 50 条
  • [1] Convex rearrangements of stochastic processes
    Davydov, Y
    Thilly, E
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (12): : 1087 - 1090
  • [2] Convex rearrangements of stable processes
    Davydov Yu.
    [J]. Journal of Mathematical Sciences, 1998, 92 (4) : 4010 - 4016
  • [3] Convex rearrangements of smoothed random processes
    Davydov, Y
    Thilly, E
    [J]. LIMIT THEOREMS IN PROBABILITY AND STATISTICS, VOL I, 2002, : 521 - 552
  • [4] GAUSSIAN PROCESSES AND CONVEX BODIES
    Vitale, R. A.
    [J]. ECS10: THE10TH EUROPEAN CONGRESS OF STEREOLOGY AND IMAGE ANALYSIS, 2009, : 89 - 93
  • [5] Convex hulls of Gaussian processes
    Davydov, Y
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (06): : 847 - 861
  • [6] CONVEX BODIES AND GAUSSIAN PROCESSES
    Vitale, Richard A.
    [J]. IMAGE ANALYSIS & STEREOLOGY, 2010, 29 (01): : 13 - 18
  • [7] Convex rearrangements, generalized Lorenz curves, and correlated Gaussian data
    Davydov, Youri
    Khoshnevisan, Davar
    Shi, Zhan
    Zitikis, Ricardas
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (03) : 915 - 934
  • [8] CONVEX BODIES AND LOW-RANK GAUSSIAN PROCESSES
    FERNIQUE, X
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 35 (04): : 349 - 353
  • [9] Identification of a Locally Self-similar Gaussian Process by Using Convex Rearrangements
    A. Philippe
    E. Thilly
    [J]. Methodology And Computing In Applied Probability, 2002, 4 (2) : 195 - 209
  • [10] OUTCROSSINGS FROM CONVEX POLYHEDRA FOR NONSTATIONARY GAUSSIAN-PROCESSES
    LI, CQ
    MELCHERS, RE
    [J]. JOURNAL OF ENGINEERING MECHANICS-ASCE, 1993, 119 (11): : 2354 - 2359