Determination of Binding Potential of HCV Protease Inhibitors Against to SARS-CoV-2 Papain-like Protease wtih Computational Docking

被引:1
|
作者
Caliskaner, Zihni Onur [1 ]
机构
[1] Uskudar Univ, Fac Engn & Nat Sci, Bioengn Dept, Istanbul, Turkey
关键词
Covid-19; SARS-CoV-2; docking; protease inhibitors; drug repurposing; PLpro; CORONAVIRUS; PNEUMONIA;
D O I
10.2174/1570180818666210531092605
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Background: SARS-CoV-2, a novel coronavirus that caused a pandemic respiratory disease, has recently emerged from China. Since it is a life-threatening virus, investigation of curative medications along with protective vaccines still maintains its importance. Drug repurposing is a reasonable and immediate approach to combat SARS-CoV-2 infection by identifying inhibitory molecules from marketed drugs. PL protease (PLpro) is one of the essential enzymes for the progression of SARS-CoV-2 replication and life cycle. Objective: We aimed to investigate the potential of 4 HCV protease inhibitors as probable repurposing drugs in Covid-19 treatment. Methods: In order to understand possible binding affinity of HCV protease inhibitors, Boceprevir, Grazoprevir, Simeprevir, and Telaprevir, against PLpro, we performed docking analysis in silico. Docking study was accomplished using AutoDock 4.2 Software. Potential druggable pockets on PLpro were predicted by DoGSiteScorer tool in order to explore any overlapping with binding regions and these pockets. Results: This analysis demonstrated Boceprevir, Grazoprevir, Simeprevir and Telaprevir interacted by PLpro with binding energies (kcal/mol) of-4.97, -4.24, -6.98, -1.08, respectively. Asn109, one of the interacted residues with both Boceprevir and Simeprevir, is a neighbouring residue to catalytic Cys111. Additionally, Telaprevir notably interacted with catalytic His272 in the active site. Conclusion: Present study explains the binding efficiency and repurposing potential of certain HCV protease inhibitors against to SARS-CoV-2 PLpro enzyme. Docking sites and potential druggability of ligands were also crosschecked by the estimation of druggable pockets. Thereby our results can promote promising preliminary data for research on drug development in the fight of Covid-19.
引用
收藏
页码:949 / 960
页数:12
相关论文
共 50 条
  • [1] Molecular docking of potential SARS-CoV-2 papain-like protease inhibitors
    Li, Daoqun
    Luan, Junwen
    Zhang, Leiliang
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2021, 538 : 72 - 79
  • [2] In silico analysis of SARS-CoV-2 papain-like protease potential inhibitors
    Elseginy, Samia A.
    Anwar, Manal M.
    [J]. RSC ADVANCES, 2021, 11 (61) : 38616 - 38631
  • [3] Natural biflavones are potent inhibitors against SARS-CoV-2 papain-like protease
    Li, Lingyu
    Ma, Liyan
    Hu, Yue
    Li, Xiaoxue
    Yu, Meng
    Shang, Hai
    Zou, Zhongmei
    [J]. PHYTOCHEMISTRY, 2022, 193
  • [4] Supercomputing, Docking and Quantum Mechanics in Quest for Inhibitors of Papain-like Protease of SARS-CoV-2
    Sulimov, A., V
    Ilin, I. S.
    Kutov, D. C.
    Stolpovskaya, N., V
    Shikhaliev, Kh S.
    Sulimov, V. B.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (07) : 1571 - 1579
  • [5] Validation and Invalidation of SARS-CoV-2 Papain-like Protease Inhibitors
    Ma, Chunlong
    Wang, Jun
    [J]. ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE, 2022, 5 (02) : 102 - 109
  • [6] Supercomputing, Docking and Quantum Mechanics in Quest for Inhibitors of Papain-like Protease of SARS-CoV-2
    A. V. Sulimov
    I. S. Ilin
    D. C. Kutov
    N. V. Stolpovskaya
    Kh. S. Shikhaliev
    V. B. Sulimov
    [J]. Lobachevskii Journal of Mathematics, 2021, 42 : 1571 - 1579
  • [7] Can Papain-like Protease Inhibitors Halt SARS-CoV-2 Replication?
    Maiti, Biplab K.
    [J]. ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE, 2020, 3 (05) : 1017 - 1019
  • [8] In silico Exploration of Inhibitors for SARS-CoV-2's Papain-Like Protease
    Huynh, Tien
    Cornell, Wendy
    Luan, Binquan
    [J]. FRONTIERS IN CHEMISTRY, 2021, 8
  • [9] Natural Products as Potential Inhibitors for SARS-CoV-2 Papain-Like Protease: An in Silico Study
    Alvarado-Huayhuaz, Jesus
    Jimenez, Fabian
    Cordova-Serrano, Gerson
    Camps, Ihosvany
    Puma-Zamora, Wilmar
    [J]. ADVANCES IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, BSB 2020, 2020, 12558 : 265 - 270
  • [10] SARS-CoV-2 Papain-Like Protease Potential Inhibitors-In Silico Quantitative Assessment
    Stasiulewicz, Adam
    Maksymiuk, Alicja W.
    Nguyen, Mai Lan
    Belza, Barbara
    Sulkowska, Joanna I.
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (08)