Appearance and Motion Enhancement for Video-Based Person Re-Identification

被引:0
|
作者
Li, Shuzhao [1 ]
Yu, Huimin [1 ,2 ]
Hu, Haoji [1 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Peoples R China
[2] Zhejiang Univ, State Key Lab CAD & CG, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an Appearance and Motion Enhancement Model (AMEM) for video-based person re-identification to enrich the two kinds of information contained in the backbone network in a more interpretable way. Concretely, human attribute recognition under the supervision of pseudo labels is exploited in an Appearance Enhancement Module (AEM) to help enrich the appearance and semantic information. A Motion Enhancement Module (MEM) is designed to capture the identity-discriminative walking patterns through predicting future frames. Despite a complex model with several auxiliary modules during training, only the backbone model plus two small branches are kept for similarity evaluation which constitute a simple but effective final model. Extensive experiments conducted on three popular video-based person ReID benchmarks demonstrate the effectiveness of our proposed model and the state-of-the-art performance compared with existing methods.
引用
收藏
页码:11394 / 11401
页数:8
相关论文
共 50 条
  • [1] Video-Based Person Re-Identification With Accumulative Motion Context
    Liu, Hao
    Jie, Zequn
    Jayashree, Karlekar
    Qi, Meibin
    Jiang, Jianguo
    Yan, Shuicheng
    Feng, Jiashi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (10) : 2788 - 2802
  • [2] Motion Feature Aggregation for Video-Based Person Re-Identification
    Gu, Xinqian
    Chang, Hong
    Ma, Bingpeng
    Shan, Shiguang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 3908 - 3919
  • [3] Learning Compact Appearance Representation for Video-Based Person Re-Identification
    Zhang, Wei
    Hu, Shengnan
    Liu, Kan
    Zha, Zhengjun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (08) : 2442 - 2452
  • [4] Video-based person re-identification with scene and person attributes
    Gong, Xun
    Luo, Bin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 8117 - 8128
  • [5] Video-based person re-identification with scene and person attributes
    Xun Gong
    Bin Luo
    Multimedia Tools and Applications, 2024, 83 : 8117 - 8128
  • [6] Video-Based Convolutional Attention for Person Re-Identification
    Zamprogno, Marco
    Passon, Marco
    Martinel, Niki
    Serra, Giuseppe
    Lancioni, Giuseppe
    Micheloni, Christian
    Tasso, Carlo
    Foresti, Gian Luca
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT I, 2019, 11751 : 3 - 14
  • [7] Deep asymmetric video-based person re-identification
    Meng, Jingke
    Wu, Ancong
    Zheng, Wei-Shi
    PATTERN RECOGNITION, 2019, 93 : 430 - 441
  • [8] Video-Based Person Re-Identification With Unregulated Sequences
    Huang, Wenjun
    Liang, Chao
    Xiao, Chunxia
    Han, Zhen
    INTERNATIONAL JOURNAL OF DIGITAL CRIME AND FORENSICS, 2020, 12 (02) : 59 - 76
  • [9] Flow-guided feature enhancement network for video-based person re-identification
    Gong, Weichao
    Yan, Bo
    Lin, Chuming
    NEUROCOMPUTING, 2020, 383 : 295 - 302
  • [10] I-PRIDe: Video-based Person Re-Identification
    Yang, Jingwen
    Leskovsky, Peter
    Cortes, Andoni
    Garcia, Jorge
    Otaegui, Oihana
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST 2022), 2022,