On Relative Entropy Maximum Entropy and design of questionnaires

被引:0
|
作者
Chibat, Ahmed [1 ]
机构
[1] Univ Mentouri Constantine, Fac Sci, Dept Math, Lab Math Appl & Modelisat, Constantine, Algeria
关键词
Shannon Information; Capacity; Kullback-Liebler distance; Relative Entropy; Maximum Entropy; Clustering; Design of questionnaires; INFERENCE; LOGIC;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we study the means of quantitatively measuring the information brought by the observation during the identification of the laws which govern the random phenomena. From the study on a variable, we build the concept of gain of information on the concept of relative entropy. We show that, at the time of the refinement of the study by disintegration of the states of the character, there is a threshold for the probabilities attached to the various states. This threshold determines the situations where the gain of information is final and those where it is illusory. We show how this study can be extended to the case of several variables. We deduce from it a quantitative method of selection of variables, step by step, respecting the principle of maximum entropy. This method leads to the development, after pre investigation, of parsimonious questionnaires likely to collect the greatest part of information.
引用
收藏
页码:206 / 212
页数:7
相关论文
共 50 条
  • [1] Maximum relative entropy of coherence for quantum channels
    Zhi-Xiang Jin
    Long-Mei Yang
    Shao-Ming Fei
    Xianqing Li-Jost
    Zhi-Xi Wang
    Gui-Lu Long
    Cong-Feng Qiao
    Science China Physics, Mechanics & Astronomy, 2021, 64
  • [2] Maximum relative entropy of coherence for quantum channels
    Jin, Zhi-Xiang
    Yang, Long-Mei
    Fei, Shao-Ming
    Li-Jost, Xianqing
    Wang, Zhi-Xi
    Long, Gui-Lu
    Qiao, Cong-Feng
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2021, 64 (08)
  • [3] Maximum relative entropy of coherence for quantum channels
    Zhi-Xiang Jin
    Long-Mei Yang
    Shao-Ming Fei
    Xianqing Li-Jost
    Zhi-Xi Wang
    Gui-Lu Long
    Cong-Feng Qiao
    Science China(Physics,Mechanics & Astronomy), 2021, 64 (08) : 5 - 10
  • [4] Maximum relative entropy of coherence for quantum channels
    ZhiXiang Jin
    LongMei Yang
    ShaoMing Fei
    Xianqing LiJost
    ZhiXi Wang
    GuiLu Long
    CongFeng Qiao
    Science China(Physics,Mechanics & Astronomy), 2021, Mechanics & Astronomy)2021 (08) : 5 - 10
  • [5] Maximum Relative Entropy Updating and the Value of Learning
    Dziurosz-Serafinowicz, Patryk
    ENTROPY, 2015, 17 (03): : 1146 - 1164
  • [6] Use of the Principles of Maximum Entropy and Maximum Relative Entropy for the Determination of Uncertain Parameter Distributions in Engineering Applications
    Munoz-Cobo, Jose-Luis
    Mendizabal, Rafael
    Miquel, Arturo
    Berna, Cesar
    Escriva, Alberto
    ENTROPY, 2017, 19 (09)
  • [7] Protein design based on the relative entropy
    Jiao, Xiong
    Wang, Baohan
    Su, Jiguo
    Chen, Weizu
    Wang, Cunxin
    PHYSICAL REVIEW E, 2006, 73 (06):
  • [8] Relative entropy equals bulk relative entropy
    Daniel L. Jafferis
    Aitor Lewkowycz
    Juan Maldacena
    S. Josephine Suh
    Journal of High Energy Physics, 2016
  • [9] CRITERIA FOR CHOOSING SUBSETS TO OBTAIN MAXIMUM RELATIVE ENTROPY
    WILLIAMS, PW
    COMPUTER JOURNAL, 1978, 21 (01): : 57 - 62
  • [10] Relative entropy equals bulk relative entropy
    Jafferis, Daniel L.
    Lewkowycz, Aitor
    Maldacena, Juan
    Suh, S. Josephine
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (06):