Anomaly Detection in Data Streams using Fuzzy Logic

被引:0
|
作者
Khan, Muhammad Umair
机构
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Unsupervised data mining techniques require human intervention for understanding and analysis of the clustering results. This becomes an issue in dynamic users/applications and there is a need for real-time decision making and interpretation. In this paper we will present an approach to automate the annotation of results obtained from data stream clustering to facilitate interpreting that whether the given cluster is an anomaly or not. We use fuzzy logic to label the data. The results will be obtained on the basis of density function & the number of elements in a certain cluster.
引用
收藏
页码:126 / 133
页数:8
相关论文
共 50 条
  • [1] Evolving Fuzzy Rules for Anomaly Detection in Data Streams
    Moshtaghi, Masud
    Bezdek, James C.
    Leckie, Christopher
    Karunasekera, Shanika
    Palaniswami, Marimuthu
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (03) : 688 - 700
  • [2] A novel approach for anomaly detection in data streams: Fuzzy-statistical detection mode
    Li, Fenghuan
    Zheng, Dequan
    Zhao, Tiejun
    Pedrycz, Witold
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (05) : 2611 - 2622
  • [3] Anomaly detection for smartphone data streams
    Mirsky, Yisroel
    Shabtai, Asaf
    Shapira, Bracha
    Elovici, Yuval
    Rokach, Lior
    [J]. PERVASIVE AND MOBILE COMPUTING, 2017, 35 : 83 - 107
  • [4] Anomaly Pattern Detection on Data Streams
    Park, Cheong Hee
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2018, : 689 - 692
  • [5] Anomaly instruction detection of masqueraders and threat evaluation using fuzzy logic
    Yingbing Yu
    Graham, James H.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 2309 - +
  • [6] Network Anomaly Detection System using Genetic Algorithm and Fuzzy Logic
    Hamamoto, Anderson Hiroshi
    Carvalho, Luiz Fernando
    Hiera Sampaio, Lucas Dias
    Abrao, Taufik
    Proenca, Mario Lemes, Jr.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2018, 92 : 390 - 402
  • [7] Anomaly Detection in VoIP System Using Neural Network and Fuzzy Logic
    Shekokar, Narendra
    Devane, Satish
    [J]. COMPUTATIONAL INTELLIGENCE AND INFORMATION TECHNOLOGY, 2011, 250 : 537 - +
  • [8] From Anomaly Detection to Rumour Detection using Data Streams of Social Platforms
    Nguyen Thanh Tam
    Weidlich, Matthias
    Zheng, Bolong
    Yin, Hongzhi
    Nguyen Quoc Viet Hung
    Stantic, Bela
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 12 (09): : 1016 - 1029
  • [9] Fuzzy Logic Inference for Unsupervised Anomaly Detection
    Gladkykh, Tetiana
    Hnot, Taras
    Solskyy, Volodymyr
    [J]. PROCEEDINGS OF THE 2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA STREAM MINING & PROCESSING (DSMP), 2016, : 42 - 47
  • [10] Anomaly Intrusion Detection Based Upon Data Mining Techniques and Fuzzy Logic
    Yu, Yingbing
    Wu, Han
    [J]. PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 514 - 517