Multipass Resistive-Pulse Observations of the Rotational Tumbling of Individual Nanorods

被引:22
|
作者
Zhang, Yulun [1 ]
Edwards, Martin A. [1 ]
German, Sean R. [1 ,2 ]
White, Henry S. [1 ]
机构
[1] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA
[2] Revalesio Corp, 1200 East D St, Tacoma, WA 98421 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2016年 / 120卷 / 37期
关键词
SOLID-STATE NANOPORES; ANISOTROPIC NANOPARTICLES; COULTER-COUNTER; DRUG-DELIVERY; GOLD NANORODS; PARTICLES; DYNAMICS; SHAPE; SIZE; ORIENTATION;
D O I
10.1021/acs.jpcc.6b02018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rotational tumbling of nanorods as they trans locate through a glass nanopipet modulates the flux of charge carrying ions, generating a resistive pulse with multiple peaks. The measured times between maxima and minima in the resistive pulse correspond to an average rotation of approximately 90 degrees and can be used to compute the rotational diffusion coefficient, D-r. Analytical expressions for the rotational diffusion coefficient (D-r) in terms of the nanorod length (L) allow the calculation of the rod length. We report experiments in which an individual Au nanorod (nominal length of 77-122 nm) is driven repeatedly through the nanopipet orifice by voltage switching at up to 30 Hz, allowing rapid measurement of D-r and L of individual nanorods with similar to 15 error. Measured values of D-r between 2000 and 4000 rad(2) s(-1) for Au nanorods of 77-122 nm length are in good agreement with theoretical predictions.
引用
收藏
页码:20781 / 20788
页数:8
相关论文
共 50 条
  • [1] Simultaneous Multipass Resistive-Pulse Sensing and Fluorescence Imaging of Liposomes
    Schmeltzer, Alexandra J.
    Peterson, Eric M.
    Harris, Joel M.
    Lathrop, Daniel K.
    German, Sean R.
    White, Henry S.
    [J]. ACS NANO, 2024, 18 (09) : 7241 - 7252
  • [2] Characterizations of nanospheres and nanorods using resistive-pulse sensing
    Che-Yen Lee
    Chihchen Chen
    [J]. Microsystem Technologies, 2017, 23 : 299 - 304
  • [3] Characterizations of nanospheres and nanorods using resistive-pulse sensing
    Lee, Che-Yen
    Chen, Chihchen
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2017, 23 (02): : 299 - 304
  • [4] Resistive-Pulse Analysis of Nanoparticles
    Luo, Long
    German, Sean R.
    Lan, Wen-Jie
    Holden, Deric A.
    Mega, Tony L.
    White, Henry S.
    [J]. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 7, 2014, 7 : 513 - 535
  • [5] Electrochemical Resistive-Pulse Sensing
    Pan, Rongrong
    Hu, Keke
    Jiang, Dechen
    Samurai, Uri
    Mirkin, Michael V.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (50) : 19555 - 19559
  • [6] Resistive-Pulse Detection of Multilamellar Liposomes
    Holden, Deric A.
    Watkins, John J.
    White, Henry S.
    [J]. LANGMUIR, 2012, 28 (19) : 7572 - 7577
  • [7] A resistive-pulse sensor chip for multianalyte immunoassays
    Carbonaro, A
    Sohn, LL
    [J]. LAB ON A CHIP, 2005, 5 (10) : 1155 - 1160
  • [8] Cell Screening Using Resistive-Pulse Sensing
    Balakrishnan, Karthik
    Sohn, Lydia L.
    [J]. LABORATORY METHODS IN CELL BIOLOGY: BIOCHEMISTRY AND CELL CULTURE, 2012, 112 : 369 - 387
  • [9] Resistive-pulse sensing - From microbes to molecules
    Bayley, H
    Martin, CR
    [J]. CHEMICAL REVIEWS, 2000, 100 (07) : 2575 - 2594
  • [10] RESISTIVE-PULSE PARTICLE-SIZING INSTRUMENT
    VENOLIA, AW
    [J]. ANALYTICAL CHEMISTRY, 1978, 50 (09) : 1275 - 1279