A numerical test of long-time stability for rigid body integrators

被引:1
|
作者
Ortolan, Giulia [1 ]
Saccon, Alessandro [2 ]
机构
[1] Univ Padua, Dept Informat Engn, I-35131 Padua, Italy
[2] Univ Tecn Lisboa, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
electromechanical; variational methods; rigid body dynamics; geometric methods; long-time stability; RUNGE-KUTTA METHODS; VARIATIONAL INTEGRATORS; HAMILTONIAN-SYSTEMS; LIE-GROUPS; SYMPLECTIC INTEGRATION; ROTATIONAL-DYNAMICS; SPLITTING METHODS; ALGORITHMS; MANIFOLDS; MOMENTUM;
D O I
10.1002/nme.3333
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the context of Hamiltonian ODEs, a necessary condition for an integrator to be symplectic or conjugate-symplectic is that it nearly preserves the exact Hamiltonian. This paper introduces a numerical test of this necessity for rigid body methods. It turns out that several rigid body integrators proposed in literature fail this test. Hence, these integrators should be used with caution for long-time simulation. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:390 / 402
页数:13
相关论文
共 50 条