On the existence of a global minimum in inverse parameters identification by Self-Optimizing inverse analysis method

被引:1
|
作者
Yun, Gun Jin [1 ]
Shang, Shen [2 ]
机构
[1] Seoul Natl Univ, Dept Mech & Aerosp Engn, Seoul 08826, South Korea
[2] AZZ WSI, 2225 Skyland Court, Norcross, GA 30071 USA
基金
新加坡国家研究基金会;
关键词
Parameter identification; Inverse problems; Self-Optimizing inverse analysis method; Anisotropic linear elasticity; Non-homogeneous materials; VIRTUAL FIELDS METHOD; MODEL; COMPOSITES; UNIQUENESS; STIFFNESS;
D O I
10.1016/j.camwa.2018.10.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a mathematical proof of the existence of a global minimum of Self-Optim (Self-Optimizing Inverse Analysis Method) cost functional is presented based upon weak-solution theory of partial differential equations. The Self-Optim provides single global minimum rather than having multiple global minima corresponding to unrealistic solutions of the inverse problem. Furthermore, discrete approximation of the inverse problem and computational methods for the cost functional are proposed and the proof is numerically verified. This paper provides a rigorous mathematical foundation for applications of the Self-Optim method to various inverse problems in mechanics. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:803 / 814
页数:12
相关论文
共 50 条
  • [1] Identification of elasto-plastic constitutive parameters by self-optimizing inverse method: Experimental verifications
    Shang, Shen
    Yun, Gun Jin
    Computers, Materials and Continua, 2012, 27 (01): : 55 - 72
  • [2] Identification of Elasto-Plastic Constitutive Parameters by Self-Optimizing Inverse Method: Experimental Verifications
    Shang, Shen
    Yun, Gun Jin
    CMC-COMPUTERS MATERIALS & CONTINUA, 2012, 27 (01): : 55 - 72
  • [3] A self-optimizing inverse analysis method for estimation of cyclic elasto-plasticity model parameters
    Yun, Gun Jin
    Shang, Shen
    INTERNATIONAL JOURNAL OF PLASTICITY, 2011, 27 (04) : 576 - 595
  • [4] Reconstruction of Spatially Varying Random Material Properties by Self-Optimizing Inverse Method
    Weaver, Joshua M.
    Yun, Gunjin J.
    RESIDUAL STRESS, THERMOMECHANICS & INFRARED IMAGING, HYBRID TECHNIQUES AND INVERSE PROBLEMS, VOL 9, 2016, : 1 - 9
  • [5] INVERSE IDENTIFICATION METHOD FOR MATERIAL PARAMETERS ESTIMATIONS - ANALYSIS OF EXPERIMENTS
    Rojicek, Jaroslav
    EXPERIMENTALNI ANALYZA NAPETI 2009/EXPERIMENTAL STRESS ANALYSIS, PROCEEDINGS, 2009, : 220 - 227
  • [6] Identification of soil parameters by inverse analysis
    Zentar, R
    Hicher, PY
    Moulin, G
    COMPUTERS AND GEOTECHNICS, 2001, 28 (02) : 129 - 144
  • [7] Enhanced global self-optimizing control
    Cao, Yi
    Ye, Lingjian
    27TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT B, 2017, 40B : 1651 - 1656
  • [8] New inverse method for identification of constitutive parameters
    周计明
    齐乐华
    陈国定
    TransactionsofNonferrousMetalsSocietyofChina, 2006, (01) : 148 - 152
  • [9] New inverse method for identification of constitutive parameters
    Zhou, JM
    Qi, LH
    Chen, GD
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2006, 16 (01) : 148 - 152
  • [10] Identification of viscoelastic rheological parameters by inverse analysis
    Nouatin, OH
    Coupez, T
    Agassant, JF
    PROGRESS AND TRENDS IN RHEOLOGY V, 1998, : 112 - 113