A New Incremental Pairwise Clustering Algorithm

被引:2
|
作者
Seo, Sambu [1 ]
Mohr, Johannes [1 ]
Obermayer, Klaus [1 ]
机构
[1] Berlin Univ Technol, Dept Elect Engn & Comp Sci, D-10587 Berlin, Germany
关键词
D O I
10.1109/ICMLA.2009.42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pairwise clustering methods are able to handle relational data, in which a set of objects is described via a matrix of pairwise (dis)similarities. Here, we consider a cost function for pairwise clustering which maximizes model entropy under the constraint that the error for reconstructing objects from class information is fixed to a small value. Based on the analysis of structural transitions, we derive a new incremental pairwise clustering method which increases the number of clusters until a certain value of a Lagrange multiplier is reached. In addition, the calculation of phase transitions is used for speed-up. The incremental duplication of clusters helps to avoid local optima, and the stopping criterion automatically determines the number of clusters. The performance of the method is assessed on artificial and real-world data.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 50 条
  • [1] A New Incremental Algorithm for Overlapped Clustering
    Perez Suarez, Airel
    Martinez Trinidad, Jose Fco.
    Carrasco Ochoa, Jesus A.
    Medina Pagola, Jose E.
    [J]. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, PROCEEDINGS, 2009, 5856 : 497 - 504
  • [2] Document Clustering Using Incremental and Pairwise Approaches
    Tran, Tien
    Nayak, Richi
    Bruza, Peter
    [J]. FOCUSED ACCESS TO XML DOCUMENTS, 2008, 4862 : 222 - 233
  • [3] Incremental Pairwise Clustering for Large Proximity Matrices
    Seo, Sambu
    Mohr, Johannes
    Li, Ningfei
    Horn, Andreas
    Obermayer, Klaus
    [J]. 2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [4] A randomized algorithm for pairwise clustering
    Gdalyahu, Y
    Weinshall, D
    Werman, M
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 424 - 430
  • [5] A Fast Incremental Clustering Algorithm
    Su, Xiaoke
    Lan, Yang
    Wan, Renxia
    Qin, Yuming
    [J]. ISIP: 2009 INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING, PROCEEDINGS, 2009, : 175 - +
  • [6] CBICA: Correlation Based Incremental Clustering Algorithm, a New Approach
    Shinde, Kaustubh
    Mulay, Preeti
    [J]. 2017 2ND INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2017, : 291 - 296
  • [7] Pairwise clustering with matrix factorisation and the EM algorithm
    Robles-Kelly, A
    Hancock, ER
    [J]. COMPUTER VISION - ECCV 2002, PT II, 2002, 2351 : 63 - 77
  • [8] A New Nonparametric Pairwise Clustering Algorithm Based on Iterative Estimation of Distance Profiles
    Shlomo Dubnov
    Ran El-Yaniv
    Yoram Gdalyahu
    Elad Schneidman
    Naftali Tishby
    Golan Yona
    [J]. Machine Learning, 2002, 47 : 35 - 61
  • [9] A new nonparametric pairwise clustering algorithm based on iterative estimation of distance profiles
    Dubnov, S
    El-Yaniv, R
    Gdalyahu, Y
    Schneidman, E
    Tishby, N
    Yona, G
    [J]. MACHINE LEARNING, 2002, 47 (01) : 35 - 61
  • [10] A new semi-supervised clustering algorithm with pairwise constraints by competitive agglomeration
    Gao, Cui-Fang
    Wu, Xiao-Jun
    [J]. APPLIED SOFT COMPUTING, 2011, 11 (08) : 5281 - 5291