Schatten q-norms and determinantal inequalities for matrices with numerical ranges in a sector

被引:4
|
作者
Yang, Junjian [1 ,2 ]
Lu, Linzhang [1 ,3 ]
Chen, Zhen [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang, Guizhou, Peoples R China
[2] Hainan Normal Univ, Sch Math & Stat, Haikou, Hainan, Peoples R China
[3] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2019年 / 67卷 / 02期
基金
中国国家自然科学基金;
关键词
Schatten q-norms; determinantal inequality; numerical range; partial trace; EXTENSION; FIEDLER;
D O I
10.1080/03081087.2017.1417351
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When A is a density matrix in Mn. Mk, Audenaert [J Math Phys. 2007; 48] proved an interesting inequality for Schatten q- norms 1 + A q = tr1A q + tr2A q, where tr1 and tr2 stand for the first and second partial trace, respectively, a notion from quantum information theory. As an analogue of this result, Lin [Canad Math Bull. 2016; 59] recently presented the following determinantal inequality 1 + det A = det (tr1A) n + det (tr2A) k. In this note, we first correct a result of Kuai [Linear Multilinear Algebra. doi: 10.1080/ 03081087.2017.1304521] and then generalize the above two inequalities to a larger class of matrices whose numerical ranges are contained in a sector.
引用
收藏
页码:221 / 227
页数:7
相关论文
共 16 条
  • [1] Determinantal and eigenvalue inequalities for matrices with numerical ranges in a sector
    Li, Chi-Kwong
    Sze, Nung-Sing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (01) : 487 - 491
  • [2] SINGULAR VALUE INEQUALITIES FOR MATRICES WITH NUMERICAL RANGES IN A SECTOR
    Drury, Stephen
    Lin, Minghua
    OPERATORS AND MATRICES, 2014, 8 (04): : 1143 - 1148
  • [3] Analogues of Some Determinantal Inequalities for Sector Matrices
    Liu, J.
    Sheng, X.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01): : 53 - 59
  • [4] Analogues of Some Determinantal Inequalities for Sector Matrices
    J. Liu
    X. Sheng
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 53 - 59
  • [5] PROPERTIES OF MATRICES WITH NUMERICAL RANGES IN A SECTOR
    Zhang, D.
    Hou, L.
    Ma, L.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (06): : 1699 - 1707
  • [6] Inequalities for norms and numerical radii of operator matrices
    Kittaneh, Fuad
    Rashid, M. H. M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (04)
  • [7] SOME GENERALIZATIONS OF NUMERICAL RADII AND SCHATTEN p-NORMS INEQUALITIES
    Ren, Yonghui
    Yang, Changsen
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (04): : 1371 - 1386
  • [8] Generalized-weighted numerical radius inequalities for Schatten p-norms
    Alrimawi, Fadi
    Kawariq, Hani
    Abushaheen, Fuad A.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (03): : 1463 - 1473
  • [9] CONCAVE FUNCTIONS OF PARTITIONED MATRICES WITH NUMERICAL RANGES IN A SECTOR
    Hou, Lei
    Zhang, Dengpeng
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (02): : 583 - 589
  • [10] Rotfel'd inequality for partitioned matrices with numerical ranges in a sector
    Fu, Xiaohui
    Liu, Yang
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (01): : 105 - 109