Spatio-Temporal Representation With Deep Neural Recurrent Network in MIMO CSI Feedback

被引:49
|
作者
Li, Xiangyi [1 ]
Wu, Huaming [1 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution; Feature extraction; Logic gates; MIMO communication; Wireless communication; Precoding; Correlation; MIMO; CSI feedback; FDD; recurrent neural network; spatio-temporal feature; CHANNELS;
D O I
10.1109/LWC.2020.2964550
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In multiple-input multiple-output (MIMO) systems, it is crucial of utilizing the available channel state information (CSI) at the transmitter for precoding to improve the performance of frequency division duplex (FDD) networks. One of the main challenges is to compress a large amount of CSI in CSI feedback transmission in massive MIMO systems. In this letter, we propose a deep learning (DL)-based approach that uses a deep recurrent neural network (RNN) to learn temporal correlation and adopts depthwise separable convolution to shrink the model. The feature extraction module is also elaborately devised by studying decoupled spatio-temporal feature representations in different structures. Experimental results demonstrate that the proposed approach outperforms existing DL-based methods in terms of recovery quality and accuracy, which can also achieve remarkable robustness at low compression ratio (CR).
引用
收藏
页码:653 / 657
页数:5
相关论文
共 50 条
  • [1] Deep Recurrent Spatio-Temporal Neural Network for Motor Imagery based BCI
    Ko, Wonjun
    Yoon, Jeeseok
    Kang, Eunsong
    Jun, Eunji
    Choi, Jun-Sik
    Suk, Heung-Il
    [J]. 2018 6TH INTERNATIONAL CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2018, : 195 - 197
  • [2] ST-TNet: An spatio-temporal joint transformer network for CSI feedback in FDD-MIMO systems
    Wang, Linyu
    Cao, Yize
    Xiang, Jianhong
    [J]. Physical Communication, 2025, 68
  • [3] Spatio-Temporal Wireless Traffic Prediction With Recurrent Neural Network
    Qiu, Chen
    Zhang, Yanyan
    Feng, Zhiyong
    Zhang, Ping
    Cui, Shuguang
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (04) : 554 - 557
  • [4] Heterogeneous recurrent spiking neural network for spatio-temporal classification
    Chakraborty, Biswadeep
    Mukhopadhyay, Saibal
    [J]. FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [5] Application of a Dynamic Recurrent Neural Network in Spatio-Temporal Forecasting
    Cheng, Tao
    Wang, Jiaqiu
    [J]. INFORMATION FUSION AND GEOGRAPHIC INFORMATION SYSTEMS, PROCEEDINGS, 2007, : 173 - +
  • [6] Learning expectation in insects: A recurrent spiking neural model for spatio-temporal representation
    Arena, Paolo
    Patane, Luca
    Termini, Pietro Savio
    [J]. NEURAL NETWORKS, 2012, 32 : 35 - 45
  • [7] Spatio-Temporal Attention Deep Recurrent Q-Network for POMDPs
    Etchart, Mariano
    Ladosz, Pawel
    Mulvaney, David
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I, 2019, 11804 : 98 - 105
  • [8] Strategies for supplementing recurrent neural network training for spatio-temporal prediction
    Schutera, Mark
    Elser, Stefan
    Abhau, Jochen
    Mikut, Ralf
    Reischl, Markus
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2019, 67 (07) : 545 - 556
  • [9] Video Fingerprint Algorithm Based on Spatio-Temporal Deep Neural Network
    Wang Dongdong
    Li Yuenan
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (01)
  • [10] PedNet: A Spatio-Temporal Deep Convolutional Neural Network for Pedestrian Segmentation
    Ullah, Mohib
    Mohammed, Ahmed
    Cheikh, Faouzi Alaya
    [J]. JOURNAL OF IMAGING, 2018, 4 (09)