Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation

被引:71
|
作者
Gu, MG [1 ]
Zhu, HT
机构
[1] Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
[2] Univ Victoria, Victoria, BC V8W 2Y2, Canada
关键词
auto-normal model; lsing model; Markov chain Monte Carlo methods; off-line average; spatial models; stochastic approximation; very-soft-core model;
D O I
10.1111/1467-9868.00289
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a two-stage algorithm for computing maximum likelihood estimates for a class of spatial models. The algorithm combines Markov chain Monte Carlo methods such as the Metropolis-Hastings-Green algorithm and the Gibbs sampler, and stochastic approximation methods such as the off-line average and adaptive search direction. A new criterion is built into the algorithm so stopping is automatic once the desired precision has been set. Simulation studies and applications to some real data sets have been conducted with three spatial models. We compared the algorithm proposed with a direct application of the classical Robbins-Monro algorithm using Wiebe's wheat data and found that our procedure is at least 15 times faster.
引用
收藏
页码:339 / 355
页数:17
相关论文
共 50 条
  • [1] Estimation of stochastic volatility models via Monte Carlo maximum likelihood
    Sandmann, G
    Koopman, SJ
    [J]. JOURNAL OF ECONOMETRICS, 1998, 87 (02) : 271 - 301
  • [2] Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood
    Descombes, X
    Morris, RD
    Zerubia, J
    Berthod, M
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1999, 8 (07) : 954 - 963
  • [3] Maximum likelihood estimation of Markov random field parameters using Markov chain Monte Carlo algorithms
    Descombes, X
    Morris, R
    Zerubia, J
    Berthod, M
    [J]. ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, 1223 : 133 - 148
  • [4] Estimation of Stochastic Frontier Models with Fixed Effects through Monte Carlo Maximum Likelihood
    Emvalomatis, Grigorios
    Stefanou, Spiro E.
    lansink, Alfons OuDe
    [J]. JOURNAL OF PROBABILITY AND STATISTICS, 2011, 2011
  • [5] Comparing Maximum Likelihood to Markov Chain Monte Carlo Estimation of the Multivariate Social Relations Model
    Bhangale, Aditi M.
    Jorgensen, Terrence D.
    [J]. QUANTITATIVE PSYCHOLOGY, IMPS 2023, 2024, 452 : 65 - 75
  • [6] The use of approximating models in Monte Carlo maximum likelihood estimation
    Kuk, AYC
    [J]. STATISTICS & PROBABILITY LETTERS, 1999, 45 (04) : 325 - 333
  • [7] Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods
    Lele, Subhash R.
    Dennis, Brian
    Lutscher, Frithjof
    [J]. ECOLOGY LETTERS, 2007, 10 (07) : 551 - 563
  • [8] Maximum likelihood parameter estimation of multiple chirp signals by a new Markov chain Monte Carlo approach
    Lin, Y
    Peng, YN
    Wang, XT
    [J]. PROCEEDINGS OF THE IEEE 2004 RADAR CONFERENCE, 2004, : 559 - 562
  • [9] Markov chain Monte Carlo methods for stochastic volatility models
    Chib, S
    Nardari, F
    Shephard, N
    [J]. JOURNAL OF ECONOMETRICS, 2002, 108 (02) : 281 - 316
  • [10] Asymptotics of maximum likelihood estimators based on Markov chain Monte Carlo methods
    Miasojedow, Blazej
    Niemiro, Wojciech
    Rejchel, Wojciech
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (02): : 815 - 829