Ginzburg-Landau equations and stable solutions in a rotational domain

被引:24
|
作者
Jimbo, S [1 ]
Morita, Y [1 ]
机构
[1] RYUKOKU UNIV, DEPT MATH & INFORMAT, OTSU, SHIGA 52021, JAPAN
关键词
Ginzburg-Landau equation; stable solutions; rotational domain;
D O I
10.1137/0527075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Ginzburg-Landau (GL) equations, with or without magnetic effect, are studied in the case of a rotational domain in R(3). It can be shown that there exist rotational solutions which describe the physical state of permanent current of electrons in a ring-shaped superconductor. Moreover, if a physical parameter-called the GL parameter-is sufficiently large, then these solutions are stable, that is, they are local minimizers of an energy functional (GL energy). This is proved by the spectral analysis on the linearized equation.
引用
收藏
页码:1360 / 1385
页数:26
相关论文
共 50 条
  • [1] Large Vorticity Stable Solutions to the Ginzburg-Landau Equations
    Contreras, Andres
    Serfaty, Sylvia
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (05) : 1737 - 1763
  • [2] SYMMETRY OF SOLUTIONS OF GINZBURG-LANDAU EQUATIONS
    CHANILLO, S
    KIESSLING, MKH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (08): : 1023 - 1026
  • [3] Minimax solutions of the Ginzburg-Landau equations
    Lin F.H.
    Lin T.-C.
    Selecta Mathematica, 1997, 3 (1) : 99 - 113
  • [4] NONTRIVIAL SOLUTIONS OF THE GINZBURG-LANDAU EQUATIONS
    KLIMOV, VS
    THEORETICAL AND MATHEMATICAL PHYSICS, 1982, 50 (03) : 252 - 256
  • [5] Symmetric solutions of Ginzburg-Landau equations
    Gustafson, S
    SPECTRAL AND SCATTERING THEORY, 1998, : 33 - 38
  • [6] MULTIVORTEX SOLUTIONS OF THE GINZBURG-LANDAU EQUATIONS
    WEINBERG, EJ
    PHYSICAL REVIEW D, 1979, 19 (10): : 3008 - 3012
  • [7] Stable solutions to the Ginzburg-Landau equation with magnetic effect in a thin domain
    Yoshihisa Morita
    Japan Journal of Industrial and Applied Mathematics, 2004, 21
  • [8] Stable solutions to the Ginzburg-Landau equation with magnetic effect in a thin domain
    Morita, Y
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2004, 21 (02) : 129 - 147
  • [9] Stable solitons of quadratic Ginzburg-Landau equations
    Crasovan, LC
    Malomed, BA
    Mihalache, D
    Mazilu, D
    Lederer, F
    PHYSICAL REVIEW E, 2000, 62 (01) : 1322 - 1327
  • [10] Exact Solutions for Domain Walls in Coupled Complex Ginzburg-Landau Equations
    Yee, Tat Leung
    Tsang, Alan Cheng Hou
    Malomed, Boris
    Chow, Kwok Wing
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2011, 80 (06)