Stability of the inverse scattering problem for the self-adjoint matrix Schrodinger operator on the half line

被引:1
|
作者
Xu, Xiao-Chuan [1 ]
Bondarenko, Natalia Pavlovna [2 ,3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] Samara Natl Res Univ, Dept Appl Math & Phys, Moskovskoye Shosse 34, Samara, Russia
[3] Saratov NG Chernyshevskii State Univ, Dept Mech & Math, Astrakhanskaya 83, Saratov, Russia
基金
中国国家自然科学基金; 俄罗斯科学基金会;
关键词
finite data; inverse scattering problem; matrix Schrodinger operator; stability; STURM-LIOUVILLE OPERATOR; KIRCHHOFFS RULE; QUANTUM GRAPHS; EQUATION;
D O I
10.1111/sapm.12522
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study the inverse scattering problem for the self-adjoint matrix Schrodinger operator on the half line. We estimate the difference of two potentials and the difference of the two unitary matrices in the boundary conditions when the two sets of scattering data are close enough (or coincide) on a finite interval, which implies the stability of the inverse scattering problem.
引用
收藏
页码:815 / 838
页数:24
相关论文
共 50 条