Quantum Model of Bertrand Duopoly

被引:22
|
作者
Khan, Salman [1 ]
Ramzan, M. [1 ]
Khan, M. K. [1 ]
机构
[1] Quaid I Azam Univ, Dept Phys, Islamabad 45320, Pakistan
关键词
STACKELBERG DUOPOLY; GAMES;
D O I
10.1088/0256-307X/27/8/080302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a quantum model of Bertrand duopoly and study the entanglement behavior on the profit functions of the firms. Using the concept of optimal response of each firm to the price of the opponent, we find only one Nash equilibirum point for the maximally entangled initial state. The presence of quantum entanglement in the initial state gives payoffs higher to the firms than the classical payoffs at the Nash equilibrium. As a result, the dilemma-like situation in the classical game is resolved.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Quantum Stackelberg–Bertrand duopoly
    C. F. Lo
    C. F. Yeung
    [J]. Quantum Information Processing, 2020, 19
  • [2] Quantum approach to Bertrand duopoly
    Frackiewicz, Piotr
    Sladkowski, Jan
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (09) : 3637 - 3650
  • [3] Quantum approach to Bertrand duopoly
    Piotr Fra̧ckiewicz
    Jan Sładkowski
    [J]. Quantum Information Processing, 2016, 15 : 3637 - 3650
  • [4] Quantum Bertrand duopoly with differentiated products
    Lo, CF
    Kiang, D
    [J]. PHYSICS LETTERS A, 2004, 321 (02) : 94 - 98
  • [5] Quantum Stackelberg-Bertrand duopoly
    Lo, C. F.
    Yeung, C. F.
    [J]. QUANTUM INFORMATION PROCESSING, 2020, 19 (10)
  • [6] Quantum Bertrand duopoly of incomplete information
    Qin, G
    Chen, X
    Sun, M
    Du, JF
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (19): : 4247 - 4253
  • [7] Noisy quantum Stackelberg–Bertrand duopoly game
    A. V. S. Kameshwari
    S. Balakrishnan
    [J]. The European Physical Journal Plus, 137
  • [8] Spatial simulation of the quantum Bertrand duopoly game
    Alonso-Sanz, Ramon
    Adamatzky, Andrew
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 557
  • [9] Existence of equilibria in quantum Bertrand–Edgeworth duopoly game
    Yohei Sekiguchi
    Kiri Sakahara
    Takashi Sato
    [J]. Quantum Information Processing, 2012, 11 : 1371 - 1379
  • [10] Noisy quantum Stackelberg-Bertrand duopoly game
    Kameshwari, A. V. S.
    Balakrishnan, S.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (07):