Artificial Double-Helix for Geometrical Control of Magnetic Chirality

被引:65
|
作者
Sanz-Hernandez, Dedalo [1 ,2 ]
Hierro-Rodriguez, Aurelio [3 ,4 ,5 ]
Donnelly, Claire [2 ]
Pablo-Navarro, Javier [6 ]
Sorrentino, Andrea [7 ]
Pereiro, Eva [7 ]
Magen, Cesar [6 ,8 ]
McVitie, Stephen [3 ]
Maria de Teresa, Jose [6 ,8 ]
Ferrer, Salvador [7 ]
Fischer, Peter [9 ,10 ]
Fernandez-Pacheco, Amalio [2 ,3 ]
机构
[1] Univ Paris Saclay, Unite Mixte Phys, CNRS, Thales, F-91767 Palaiseau, France
[2] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[3] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland
[4] Univ Oviedo, Dept Fis, Oviedo 33007, Spain
[5] Univ Oviedo, CINN, CSIC, El Entrego 33940, Spain
[6] Univ Zaragoza, Lab Microscopias Avanzadas LMA, Inst Nanociencia Aragon INA, Zaragoza 50018, Spain
[7] ALBA Synchrotron, Cerdanyola Del Valles 08290, Spain
[8] Univ Zaragoza, Inst Ciencia Mat Aragon ICMA, CSIC, Dept Fis Mat Condensada, Zaragoza 50009, Spain
[9] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[10] Univ Calif Santa Cruz, Phys Dept, Santa Cruz, CA 95064 USA
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
3D; nanoprinting; nanomagnetic; chirality; topological; double-helix; X-ray; ROOM-TEMPERATURE; SKYRMIONS; DOMAINS; IMAGE;
D O I
10.1021/acsnano.0c00720
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currently, chiral magnetism requires either a restricted group of natural materials or synthetic thin-film systems that exploit interfacial effects. Here, using state-of-the-art nanofabrication and magnetic X-ray microscopy, we demonstrate the imprinting of complex chiral spin states via three-dimensional geometric effects at the nanoscale. By balancing dipolar and exchange interactions in an artificial ferromagnetic double-helix nanostructure, we create magnetic domains and domain walls with a well-defined spin chirality, determined solely by the chiral geometry. We further demonstrate the ability to create confined 3D spin textures and topological defects by locally interfacing geometries of opposite chirality. The ability to create chiral spin textures via 3D nanopatterning alone enables exquisite control over the properties and location of complex topological magnetic states, of great importance for the development of future metamaterials and devices in which chirality provides enhanced functionality.
引用
收藏
页码:8084 / 8092
页数:9
相关论文
共 50 条
  • [1] From Helices to Crystals: Multiscale Representation of Chirality in Double-Helix Structures
    Li, Chong-Yang
    Xu, Han
    Cheng, Pei-Ming
    Du, Ming-Hao
    Long, La-Sheng
    Zheng, Lan-Sun
    Kong, Xiang-Jian
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (40) : 22176 - 22183
  • [2] Double-helix disruption
    不详
    NATURE CHEMISTRY, 2012, 4 (08) : 587 - 587
  • [3] Double-helix double up
    Choi, Charles Q.
    SCIENTIFIC AMERICAN, 2008, 298 (04) : 30 - 30
  • [4] THE DOUBLE-HELIX REVISITED
    GLICKSTEIN, NM
    AMERICAN BIOLOGY TEACHER, 1995, 57 (03): : 146 - 149
  • [5] Double-helix disruption
    Nature Chemistry, 2012, 4 : 587 - 587
  • [6] Double-Helix Linear Actuators
    Sabelhaus, Andrew P.
    Zampaglione, Kyle
    Tang, Ellande
    Chen, Lee-Huang
    Agogino, Adrian K.
    Agogino, Alice M.
    JOURNAL OF MECHANICAL DESIGN, 2021, 143 (10)
  • [7] Observational Evidence for a Double-Helix Structure in CMEs and Magnetic Clouds
    Osherovich, Vladimir
    Fainberg, Joseph
    Webb, Alla
    SOLAR PHYSICS, 2013, 284 (01) : 261 - 274
  • [8] A double-helix dislocation in graphene
    Pochet, Pascal
    Johnson, Harley T. T.
    NATURE MATERIALS, 2024, 23 (03) : 306 - 307
  • [9] Double-Helix Tensegrity Structures
    Nagase, K.
    Skelton, R. E.
    AIAA JOURNAL, 2015, 53 (04) : 847 - 862
  • [10] DOUBLE-HELIX INORGANIC STRUCTURES
    不详
    CHEMICAL & ENGINEERING NEWS, 2012, 90 (33) : 33 - 33