Re-identification of individuals in genomic datasets using public face images

被引:12
|
作者
Venkatesaramani, Rajagopal [1 ]
Malin, Bradley A. [2 ,3 ,4 ]
Vorobeychik, Yevgeniy [1 ]
机构
[1] Washington Univ, Dept Comp Sci & Engn, 1 Brookings Dr, St Louis, MO 63108 USA
[2] Vanderbilt Univ, Dept Biomed Informat, Med Ctr, Suite 1475,2525 West End Ave, Nashville, TN 37203 USA
[3] Vanderbilt Univ, Dept Biostat, Med Ctr, Suite 1475,2525 West End Ave, Nashville, TN 37203 USA
[4] Vanderbilt Univ, Dept Elect Engn & Comp Sci, 2201 West End Ave, Nashville, TN 37235 USA
来源
SCIENCE ADVANCES | 2021年 / 7卷 / 47期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
PRIVACY; IDENTIFICATION;
D O I
10.1126/sciadv.abg3296
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent studies suggest that genomic data can be matched to images of human faces, raising the concern that genomic data can be re-identified with relative ease. However, such investigations assume access to well-curated images, which are rarely available in practice and challenging to derive from photos not generated in a controlled laboratory setting. In this study, we reconsider re-identification risk and find that, for most individuals, the actual risk posed by linkage attacks to typical face images is substantially smaller than claimed in prior investigations. Moreover, we show that only a small amount of well-calibrated noise, imperceptible to humans, can be added to images to markedly reduce such risk. The results of this investigation create an opportunity to create image filters that enable individuals to have better control over re-identification risk based on linkage.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Robust Human Re-identification using Mean Shape Analysis of Face Images
    Kanchanapreechakorn, Sarattha
    Kusakunniran, Worapan
    [J]. TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 901 - 905
  • [2] Re-Identification in Differentially Private Incomplete Datasets
    Sei, Yuichi
    Okumura, Hiroshi
    Ohsuga, Akihiko
    [J]. IEEE Open Journal of the Computer Society, 2022, 3 : 62 - 72
  • [3] Re-Identification in Differentially Private Incomplete Datasets
    Sei, Yuichi
    Okumura, Hiroshi
    Ohsuga, Akihiko
    [J]. IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2022, 3 : 62 - 72
  • [4] Re-identification of Anonymized CDR datasets Using Social Network Data
    Cecaj, Alket
    Mamei, Marco
    Bicocchi, Nicola
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS (PERCOM WORKSHOPS), 2014, : 237 - 242
  • [5] Re-identification of individuals in genomic data-sharing beacons via allele inference
    von Thenen, Nora
    Ayday, Erman
    Cicek, A. Ercument
    [J]. BIOINFORMATICS, 2019, 35 (03) : 365 - 371
  • [6] A Survey on Face Detection and Person Re-identification
    Vidhyalakshmi, M. K.
    Poovammal, E.
    [J]. COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 1, CIDM 2015, 2016, 410 : 283 - 292
  • [7] Face Re-Identification for Digital Signage Applications
    Farinella, Giovanni Maria
    Farioli, Giuseppe
    Battiato, Sebastiano
    Leonardi, Salvo
    Gallo, Giovanni
    [J]. VIDEO ANALYTICS FOR AUDIENCE MEASUREMENT, 2014, 8811 : 40 - 52
  • [8] Re-identification of individuals from images using spot constellations: a case study in Arctic charr (Salvelinus alpinus)
    Debicki, Ignacy T.
    Mittell, Elizabeth A.
    Kristjansson, Bjarni K.
    Leblanc, Camille A.
    Morrissey, Michael B.
    Terzic, Kasim
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2021, 8 (07):
  • [9] Deep person re-identification in UAV images
    Aleksei Grigorev
    Zhihong Tian
    Seungmin Rho
    Jianxin Xiong
    Shaohui Liu
    Feng Jiang
    [J]. EURASIP Journal on Advances in Signal Processing, 2019
  • [10] Deep Person Re-Identification in Aerial Images
    Schumann, Arne
    Schuchert, Tobias
    [J]. OPTICS AND PHOTONICS FOR COUNTERTERRORISM, CRIME FIGHTING, AND DEFENCE XII, 2016, 9995