A balanced approach to multichannel blind deconvolution

被引:3
|
作者
Tsoi, Ah Chung [1 ]
Ma, Liangsuo [2 ]
机构
[1] Hong Kong Baptist Univ, Hong Kong, Hong Kong, Peoples R China
[2] Univ Iowa, Iowa City, IA 52246 USA
基金
澳大利亚研究理事会;
关键词
balanced canonical form; blind deconvolution; blind source separation; independent component analysis (ICA); linear dynamical system;
D O I
10.1109/TCSI.2007.910752
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In some general state-space approaches to the multichannel blind deconvolution problem, e.g., the information backpropagation approach (Zhang and Cichocki 2000), an implicit assumption is usually involved therein, viz., the dimension of the state vector of the mixer is known a priori. In general, if the number of states in the state space is not known a priori, Zhang and Cichocki (2000) suggested using a maximum possible number of states; this procedure will introduce additional delays in the recovered source signals. In this paper, our aim is to relax this assumption. The objective is achieved by using balanced parameterization of the underlying discrete-time dynamical system. Since there are no known balanced parameterization algorithms for discrete-time systems, we need to go through a "circuitous" route, by first transforming the discrete-time system into a continuous-time system using a bilinear transformation, perform the balanced parameterization on the resulting continuous-time system, and then transform the resulting system back to discrete-time balanced parameterized system using an inverse bilinear transformation. The number of states can be determined by the number of significant singular values in the ensuing singular value decomposition step in the balanced parameterization.
引用
收藏
页码:599 / 613
页数:15
相关论文
共 50 条
  • [1] A unified balanced approach to multichannel blind deconvolution
    Ma L.
    Tsoi A.C.
    [J]. Signal, Image and Video Processing, 2007, 1 (4) : 369 - 384
  • [2] A continuous time balanced parametrization approach to multichannel blind deconvolution
    Ma, LS
    Tsoi, AC
    [J]. INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, 2004, 3195 : 516 - 523
  • [3] A multirate approach to multichannel blind deconvolution
    Celani, A
    Bartoloni, S
    Uncini, A
    Piazza, F
    [J]. 2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL I, PROCEEDINGS, 2002, : 677 - 680
  • [4] A unified approach to superresolution and multichannel blind deconvolution
    Sroubek, Filip
    Cristobal, Gabriel
    Flusser, Jan
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (09) : 2322 - 2332
  • [5] Natural Gradient Approach to Multichannel Blind Deconvolution
    Zhang Liqing
    [J]. Journal of Systems Engineering and Electronics, 2000, (01) : 22 - 31
  • [6] Estimating function approach to multichannel blind deconvolution
    Zhang, L
    Amari, S
    Cichocki, A
    [J]. 2000 IEEE ASIA-PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS: ELECTRONIC COMMUNICATION SYSTEMS, 2000, : 587 - 590
  • [7] Generalized mutual information approach to multichannel blind deconvolution
    Pham, Dinh-Tuan
    [J]. SIGNAL PROCESSING, 2007, 87 (09) : 2045 - 2060
  • [8] An alternative natural gradient approach for multichannel blind deconvolution
    Tomassoni, M
    Squartini, S
    Piazza, F
    [J]. 2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 5742 - 5745
  • [9] Sparse multichannel blind deconvolution
    Kazemi, Nasser
    Sacchi, Mauricio D.
    [J]. GEOPHYSICS, 2014, 79 (05) : V143 - V152
  • [10] Contrasts for multichannel blind deconvolution
    Comon, P
    [J]. IEEE SIGNAL PROCESSING LETTERS, 1996, 3 (07) : 209 - 211