Kondo resonance in a mesoscopic ring coupled to a quantum dot: Exact results for the Aharonov-Bohm-Casher effects

被引:46
|
作者
Eckle, HP [1 ]
Johannesson, H
Stafford, CA
机构
[1] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia
[2] Univ Jyvaskyla, Dept Phys, FIN-40351 Jyvaskyla, Finland
[3] Univ Gothenburg, SE-41296 Gothenburg, Sweden
[4] Chalmers Univ Technol, Inst Theoret Phys, SE-41296 Gothenburg, Sweden
[5] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
关键词
D O I
10.1103/PhysRevLett.87.016602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a sidebranch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.
引用
收藏
页数:4
相关论文
共 50 条