Multi-view kernel consensus for data analysis

被引:3
|
作者
Salhov, Moshe [1 ]
Lindenbaum, Ofir [2 ]
Aizenbud, Yariv [4 ]
Silberschatz, Avi [3 ]
Shkolnisky, Yoel [4 ]
Averbuch, Amir [1 ]
机构
[1] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Sch Engn, IL-69978 Tel Aviv, Israel
[3] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
[4] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Multi-view; Kernel; Uncovering underlying low dimensional space; View as subsets of features; Ito Lemma; INTRINSIC DIMENSIONALITY ESTIMATOR; DIFFUSION; MANIFOLDS; REDUCTION; EIGENMAPS; MODELS;
D O I
10.1016/j.acha.2019.01.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Input data is high-dimensional while the intrinsic dimension of this data maybe low. Data analysis methods aim to uncover the underlying low dimensional structure imposed by the low dimensional hidden parameters. In general, uncovering these hidden parameters is achieved by utilizing distance metrics that considers the set of attributes as a single monolithic set. However, the transformation of a low dimensional phenomena into measurement of high dimensional observations can distort the distance metric. This distortion can affect the quality of the desired estimated low dimensional geometric structure. In this paper, we propose to utilize the redundancy in the feature domain by analyzing multiple subsets of features that are called views. The proposed methods utilize the consensus between different views to extract valuable geometric information that unifies multiple views about the intrinsic relationships among several different observations. This unification enhances the information better than what a single view or a simple concatenations of views can provide. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:208 / 228
页数:21
相关论文
共 50 条
  • [1] Multi-View Kernel-based Data Analysis
    Averbuch, Amir
    Salhov, Moshe
    Lindenbaum, Ofir
    Silberschatz, Avi
    Shkolnisky, Yoe
    2016 IEEE INTERNATIONAL CONFERENCE ON THE SCIENCE OF ELECTRICAL ENGINEERING (ICSEE), 2016,
  • [2] Multi-view kernel machine on single-view data
    Wang, Zhe
    Chen, Songcan
    NEUROCOMPUTING, 2009, 72 (10-12) : 2444 - 2449
  • [3] Randomized Kernel Multi-View Discriminant Analysis
    Li, Xiaoyun
    Gui, Jie
    Li, Ping
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1276 - 1284
  • [4] Multi-view kernel construction
    de Sa, Virginia R.
    Gallagher, Patrick W.
    Lewis, Joshua M.
    Malave, Vicente L.
    MACHINE LEARNING, 2010, 79 (1-2) : 47 - 71
  • [5] Multi-view kernel completion
    Sahely Bhadra
    Samuel Kaski
    Juho Rousu
    Machine Learning, 2017, 106 : 713 - 739
  • [6] Multi-view kernel completion
    Bhadra, Sahely
    Kaski, Samuel
    Rousu, Juho
    MACHINE LEARNING, 2017, 106 (05) : 713 - 739
  • [7] Multi-view kernel construction
    Virginia R. de Sa
    Patrick W. Gallagher
    Joshua M. Lewis
    Vicente L. Malave
    Machine Learning, 2010, 79 : 47 - 71
  • [8] Contrastive Multi-View Kernel Learning
    Liu, Jiyuan
    Liu, Xinwang
    Yang, Yuexiang
    Liao, Qing
    Xia, Yuanqing
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 9552 - 9566
  • [9] Multi-View Kernel Spectral Clustering
    Houthuys, Lynn
    Langone, Rocco
    Suykens, Johan A. K.
    INFORMATION FUSION, 2018, 44 : 46 - 56
  • [10] Consensus Guided Multi-View Clustering
    Liu, Hongfu
    Fu, Yun
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2018, 12 (04)