Flatland Optics with Hyperbolic Metasurfaces

被引:177
|
作者
Gomez-Diaz, J. S. [1 ]
Alu, Andrea [2 ]
机构
[1] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
[2] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
来源
ACS PHOTONICS | 2016年 / 3卷 / 12期
基金
美国国家科学基金会;
关键词
plasmonics; metasurfaces; uniaxial media; hyperbolic materials; graphene; black phosphorus; SURFACE-PLASMONS; GRAPHENE PLASMONICS; 2D MATERIALS; LIGHT; METAMATERIALS; PHASE; POLARIZATION; PROPAGATION; POLARITONS; RESOLUTION;
D O I
10.1021/acsphotonics.6b00645
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this Perspective, we discuss the physics and potential applications of planar hyperbolic metasurfaces (MTSs), with emphasis on their in-plane and near-field responses. After revisiting the governing dispersion relation and properties of the supported surface plasmon polaritons (SPPs), we discuss the different topologies that uniaxial MTSs can implement. Particular attention is devoted to the hyperbolic regime, which exhibits unusual features, such as an ideally infinite wave confinement and local density of states. In this context, we clarify the different physical mechanisms that limit the practical implementation of these ideal concepts using materials found in nature, and we describe several approaches to realize hyperbolic MTSs, ranging from the use of novel 2D materials such as black phosphorus to artificial nanostructured composites made of graphene or silver. Some exciting phenomena and applications are then presented and discussed, including negative refraction and the routing of SPPs within the surface, planar hyperlensing, dramatic enhancement and tailoring of the local density of states, and broadband super-Planckian thermal emission. We conclude by outlining our vision for the future of uniaxial MTSs and their potential impact for the development of nanophotonics, on-chip networks, sensing, imaging, and communication systems.
引用
收藏
页码:2211 / 2224
页数:14
相关论文
共 50 条
  • [1] Optics in Flatland
    Lohmann, AW
    [J]. WAVELET APPLICATIONS VIII, 2001, 4391 : 17 - 22
  • [2] Flatland optics
    Lohmann, AW
    Pe'er, A
    Friesem, AA
    Wang, DY
    [J]. OPTICS IN COMPUTING 2000, 2000, 4089 : 647 - 649
  • [3] Optics in flatland
    Lohmann, AW
    Pe'er, A
    Wang, DY
    Piestun, R
    Friesem, AA
    [J]. OPTICS FOR THE QUALITY OF LIFE, PTS 1 AND 2, 2003, 4829 : 6 - 7
  • [4] Flatland optics: fundamentals
    Lohmann, AW
    Pe'er, A
    Wang, DY
    Friesem, AA
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (10): : 1755 - 1762
  • [5] Optics - Farewell to flatland
    Hess, Ortwin
    [J]. NATURE, 2008, 455 (7211) : 299 - 300
  • [6] Observation of Analog Flatland Cherenkov Radiations on Metasurfaces
    Xu, Zhixia
    Bao, Shuo
    Liu, Junfeng
    Chang, Jie
    Kong, Xianghong
    Galdi, Vincenzo
    Cui, Tie Jun
    [J]. LASER & PHOTONICS REVIEWS, 2024, 18 (02)
  • [7] Hyperbolic Metasurfaces
    Gomez-Diaz, J. Sebastian
    Tymchenko, Mykhailo
    Alu, Andrea
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2015, : 876 - 877
  • [8] Toroidal metasurfaces in a 2D flatland
    Gupta, Manoj
    Singh, Ranjan
    [J]. Reviews in Physics, 2020, 5
  • [9] Luminescent hyperbolic metasurfaces
    Smalley, J. S. T.
    Vallini, F.
    Montoya, S. A.
    Ferrari, L.
    Shahin, S.
    Riley, C. T.
    Kante, B.
    Fullerton, E. E.
    Liu, Z.
    Fainman, Y.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [10] Moire Hyperbolic Metasurfaces
    Hu, Guangwei
    Krasnok, Alex
    Mazor, Yarden
    Qu, Cheng-Wei
    Alu, Andrea
    [J]. NANO LETTERS, 2020, 20 (05) : 3217 - 3224