On self-dual constacyclic codes of length ps over Fpm + uFpm

被引:21
|
作者
Dinh, Hai Q. [1 ,2 ,3 ]
Fan, Yun [4 ]
Liu, Hualu [4 ,5 ]
Liu, Xiusheng [5 ]
Sriboonchitta, Songsak [6 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Kent State Univ, Dept Math Sci, 4314 Mahoning Ave, Warren, OH 44483 USA
[4] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
[5] Hubei Polytech Univ, Sch Math & Phys, Huangshi 435003, Hubei, Peoples R China
[6] Chiang Mai Univ, Fac Econ, Chiang Mai 52000, Thailand
关键词
Cyclic codes; Constacyclic codes; Self-dual codes; Repeated-root codes; Codes over rings; CYCLIC CODES; NEGACYCLIC CODES; F-2+UF(2); Z(4); PREPARATA; GR(P(2); KERDOCK; 2P(S); 2(S); M);
D O I
10.1016/j.disc.2017.08.044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to establish all self-dual lambda-constacyclic codes of length p(s) over the finite commutative chain ring R = F-p(m) + uF(p)(m), where p is a prime and u(2) = 0. If lambda = alpha+u beta for nonzero elements alpha, beta of F-p(m), the ideal < u > is the unique self-dual (alpha +u beta)-constacyclic codes. If lambda = gamma for some nonzero element gamma of F-p(m) we consider two cases of gamma. When gamma = gamma(-1), i.e., gamma = 1 or -1, we first obtain the dual of every cyclic code, a formula for the number of those cyclic codes and identify all self-dual cyclic codes. Then we use the ring isomorphism phi to carry over the results about cyclic accordingly to negacyclic codes. When gamma not equal gamma(-1), it is shown that < u > is the unique self-dual gamma-constacyclic code. Among other results, the number of each type of self-dual constacyclic code is obtained. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:324 / 335
页数:12
相关论文
共 50 条
  • [1] Constacyclic codes of length ps over Fpm + uFpm
    Dinh, Hai Q.
    JOURNAL OF ALGEBRA, 2010, 324 (05) : 940 - 950
  • [2] On self-dual skew cyclic codes of length ps over Fpm + uFpm
    Hesari, Roghayeh Mohammadi
    Rezaei, Rashid
    Samei, Karim
    DISCRETE MATHEMATICS, 2021, 344 (11)
  • [3] CONSTACYCLIC CODES OF LENGTH 8ps OVER Fpm + uFpm
    Dinh, H. A. I. Q.
    Nguyen, B. A. C. T.
    Maneejuk, Paravee
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (03) : 525 - 570
  • [4] Constacyclic codes of length 2ps over Fpm + uFpm
    Chen, Bocong
    Dinh, Hai Q.
    Liu, Hongwei
    Wang, Liqi
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 37 : 108 - 130
  • [5] On constacyclic codes of length 4ps over Fpm + uFpm
    Dinh, Hai Q.
    Dhompongsa, Sompong
    Sriboonchitta, Songsak
    DISCRETE MATHEMATICS, 2017, 340 (04) : 832 - 849
  • [6] Constructing and expressing Hermitian self-dual cyclic codes of length ps over Fpm + uFpm
    Cao, Yuan
    Cao, Yonglin
    Fu, Fang-Wei
    Ma, Fanghui
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2024, 35 (03) : 291 - 314
  • [7] An efficient method to construct self-dual cyclic codes of length ps over Fpm + uFpm
    Cao, Yuan
    Cao, Yonglin
    Dinh, Hai Q.
    Jitman, Somphong
    DISCRETE MATHEMATICS, 2020, 343 (06)
  • [8] Hamming Distance of Constacyclic Codes of Length ps Over Fpm+uFpm+u2Fpm
    Dinh, Hai Q.
    Laaouine, Jamal
    Charkani, Mohammed E.
    Chinnakum, Warattaya
    IEEE ACCESS, 2021, 9 : 141064 - 141078
  • [9] Classes of constacyclic codes of length ps over the ring Fpm + uFpm + vFpm + uvFpm
    Bag, Tushar
    Pathak, Sachin
    Upadhyay, Ashish K.
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2019, 60 (04): : 693 - 707
  • [10] On (α plus uβ)-constacyclic codes of length 4ps over Fpm + uFpm
    Dinh, Hai Q.
    Nguyen, Bac T.
    Sriboonchitta, Songsak
    Vo, Thang M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (02)