LINEAR EQUATIONS FOR THE NUMBER OF INTERVALS WHICH ARE ISOMORPHIC WITH BOOLEAN LATTICES AND THE DEHN-SOMMERVILLE EQUATIONS

被引:0
|
作者
Hegedues, Gabor [1 ]
机构
[1] Johann Radon Inst Computat & Appl Math, Linz, Austria
关键词
Distributive lattice; Free resolution; Hilbert function; Partially ordered set; Stanley-Reisner ring;
D O I
10.1080/00927872.2010.517587
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P be a finite poset. Let L := J(P) denote the lattice of order ideals of P. Let b(i)(L) denote the number of Boolean intervals of L of rank i. We construct a simple graph G(P) from our poset P. Denote by f(i)(P) the number of the cliques Ki+1, contained in the graph G(P). Our main results are some linear equations connecting the numbers f(i)(P) and b(i)(L). We reprove the Dehn-Sommerville equations for simplicial polytopes. In our proof, we use free resolutions and the theory of Stanley-Reisner rings.
引用
收藏
页码:4070 / 4083
页数:14
相关论文
共 50 条