Adaptive differential evolution algorithm for multiobjective optimization problems

被引:76
|
作者
Qian, Weiyi [1 ]
Li, Ajun [1 ]
机构
[1] Bohai Univ, Dept Math, Jinzhou 121000, Liaoning, Peoples R China
关键词
multiobjective optimization problems; differential evolution algorithm; adaptive; select operator;
D O I
10.1016/j.amc.2007.12.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new adaptive differential evolution algorithm ( ADEA) is proposed for multiobjective optimization problems. In ADEA, the variable parameter F based on the number of the current Pareto-front and the diversity of the current solutions is given for adjusting search size in every generation to find Pareto solutions in mutation operator, and the select operator combines the advantages of DE with the mechanisms of Pareto-based ranking and crowding distance sorting. ADEA is implemented on five classical multiobjective problems, the results illustrate that ADEA efficiently achieves two goals of multiobjective optimization problems:find the solutions converge to the true Pareto-front and uniform spread along the front. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:431 / 440
页数:10
相关论文
共 50 条
  • [1] ADEMO/D: Multiobjective optimization by an adaptive differential evolution algorithm
    Venske, Sandra M.
    Goncalves, Richard A.
    Delgado, Myriam R.
    [J]. NEUROCOMPUTING, 2014, 127 : 65 - 77
  • [2] An Adaptive Multiobjective Differential Evolution Algorithm
    Gu, Fangqing
    Liu, Hai-lin
    [J]. JOURNAL OF COMPUTERS, 2013, 8 (02) : 294 - 301
  • [3] A hybrid of differential evolution and genetic algorithm for constrained multiobjective optimization problems
    Zhang, Min
    Geng, Huantong
    Luo, Wenjian
    Huang, Linfeng
    Wang, Xufa
    [J]. SIMULATED EVOLUTION AND LEARNING, PROCEEDINGS, 2006, 4247 : 318 - 327
  • [4] A differential evolution based algorithm for constrained multiobjective structural optimization problems
    Vargas, D. E. C.
    Lemonge, A. C. C.
    Barbosa, H. J. C.
    Bernardino, H. S.
    [J]. REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2016, 32 (02): : 91 - 99
  • [5] Adaptive Differential Evolution With Evolution Memory for Multiobjective Optimization
    Li, Kun
    Tian, Huixin
    [J]. IEEE ACCESS, 2019, 7 : 866 - 876
  • [6] Differential evolution for solving multiobjective optimization problems
    Sarker, R
    Abbass, HA
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2004, 21 (02) : 225 - 240
  • [7] A Multiobjective Differential Evolution Algorithm for Constrained Optimization
    Gong, Wenyin
    Cai, Zhihua
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 181 - 188
  • [8] An Enhanced Differential Evolution Based Algorithm with Simulated Annealing for Solving Multiobjective Optimization Problems
    Chen, Bili
    Zeng, Wenhua
    Lin, Yangbin
    Zhong, Qi
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [9] Multiguiders and Nondominate Ranking Differential Evolution Algorithm for Multiobjective Global Optimization of Electromagnetic Problems
    Baatar, Nyambayar
    Minh-Trien Pham
    Koh, Chang-Seop
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (05) : 2105 - 2108
  • [10] Advances in Differential Evolution for Solving Multiobjective Optimization Problems
    Ye, Hongtao
    Zhou, Meifang
    Wu, Yan
    [J]. ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 366 - 373