A RESOLUTION OF SINGULARITIES FOR DRINFELD'S COMPACTIFICATION BY STABLE MAPS
被引:5
|
作者:
Campbell, Justin
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Dept Math, Cambridge, MA 02138 USA
CALTECH, Dept Math, 1200 E Calif Blvd, Pasadena, CA 91125 USAHarvard Univ, Dept Math, Cambridge, MA 02138 USA
Campbell, Justin
[1
,2
]
机构:
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] CALTECH, Dept Math, 1200 E Calif Blvd, Pasadena, CA 91125 USA
Drinfeld's relative compactification plays a basic role in the theory of automorphic sheaves, and its singularities encode representation-theoretic information in the form of intersection cohomology. We introduce a resolution of singularities consisting of stable maps from nodal deformations of the curve into twisted flag varieties. As an application, we prove that the twisted intersection cohomology sheaf on Drinfeld's compactification is universally locally acyclic over the moduli stack of G-bundles at points sufficiently antidominant relative to their defect.
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Skolkovo Inst Sci & Technol, Igor Krichever Ctr Adv Studies, Moscow, RussiaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
机构:
Univ Sao Paulo, Inst Matemat & Estat, Dept Matemat, Caixa Postal 66-281, BR-05314970 Sao Paulo, BrazilUniv Sao Paulo, Inst Matemat & Estat, Dept Matemat, Caixa Postal 66-281, BR-05314970 Sao Paulo, Brazil
Hiratuka, Jorge
Saeki, Osamu
论文数: 0引用数: 0
h-index: 0
机构:
Kyushu Univ, Fac Math, Hakozaki, Fukuoka 8128581, JapanUniv Sao Paulo, Inst Matemat & Estat, Dept Matemat, Caixa Postal 66-281, BR-05314970 Sao Paulo, Brazil