Regularization of Mars Reconnaissance Orbiter CRISM along-track oversampled hyperspectral imaging observations of Mars

被引:24
|
作者
Kreisch, C. D. [1 ,2 ]
O'Sullivan, J. A. [3 ]
Arvidson, R. E. [1 ]
Politte, D. V. [3 ]
He, L. [3 ]
Stein, N. T. [1 ,4 ]
Finkel, J. [1 ]
Guinness, E. A. [1 ]
Wolff, M. J. [5 ]
Lapotre, M. G. A. [4 ]
机构
[1] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA
[2] Max Planck Inst Astrophys, D-85748 Garching, Germany
[3] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA
[4] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[5] Space Sci Inst, Boulder, CO 80301 USA
关键词
Mars; Mineralogy; Image processing; Data reduction techniques; Spectroscopy; ENDEAVOR CRATER; MARTIAN SURFACE; DIVERSITY; ALGORITHM; DISTRIBUTIONS; ROVER; VIEW;
D O I
10.1016/j.icarus.2016.09.033
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Mars Reconnaissance Orbiter Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) hyperspectral image data have been acquired in an along-track oversampled (ATO) mode with the intent of processing the data to better than the nominal similar to 18 m/pixel ground resolution. We have implemented an iterative maximum log-likelihood method (MLM) that utilizes the instrument spectral and spatial transfer functions and includes a penalty function to regularize the data. Products are produced both in sensor space and as projected hyperspectral image cubes at 12 m/pixel. Preprocessing steps include retrieval of surface single scattering albedos (SSA) using the Hapke Function and DISORT-based radiative modeling of atmospheric gases and aerosols. Resultant SSA cubes are despiked to remove extrema and tested to ensure that the remaining data are Poisson-distributed, an underlying assumption for the MLM algorithm implementation. Two examples of processed ATO data sets are presented. ATO0002EC79 covers the route taken by the Curiosity rover during its initial ascent of Mount Sharp in Gale Crater. SSA data are used to model mineral abundances and grain sizes predicted to be present in the Namib barchan sand dune sampled and analyzed by Curiosity. CRISM based results compare favorably to in situ results derived from Curiosity's measurement campaign. ATO0002DDF9 covers Marathon Valley on the Cape Tribulation rim segment of Endeavour Crater. SSA spectra indicate the presence of a minor component of Fe3+ and Mg2+ smectites on the valley floor and walls. Localization to 12 m/pixel provided the detailed spatial information needed for the Opportunity rover to traverse to and characterize those outcrops that have the deepest absorptions. The combination of orbital and rover-based data show that the smectite-bearing outcrops in Marathon Valley are impact breccias that are basaltic in composition and that have been isochemically altered in a low water to rock environment. (C) 2016 The Authors. Published by Elsevier Inc.
引用
收藏
页码:136 / 151
页数:16
相关论文
共 33 条
  • [1] Compact reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO)
    Murchie, S.
    Arvidson, R.
    Bedini, P.
    Beisser, K.
    Bibring, J.-P.
    Bishop, J.
    Boldt, J.
    Cavender, P.
    Choo, T.
    Clancy, R. T.
    Darlington, E. H.
    Marais, D. Des
    Espiritu, R.
    Fort, D.
    Green, R.
    Guinness, E.
    Hayes, J.
    Hash, C.
    Heffernan, K.
    Hemmler, J.
    Heyler, G.
    Humm, D.
    Hutcheson, J.
    Izenberg, N.
    Lee, R.
    Lees, J.
    Lohr, D.
    Malaret, E.
    Martin, T.
    McGovern, J. A.
    McGuire, P.
    Morris, R.
    Mustard, J.
    Pelkey, S.
    Rhodes, E.
    Robinson, M.
    Roush, T.
    Schaefer, E.
    Seagrave, G.
    Seelos, F.
    Silverglate, P.
    Slavney, S.
    Smith, M.
    Shyong, W.-J.
    Strohbehn, K.
    Taylor, H.
    Thompson, P.
    Tossman, B.
    Wirzburger, M.
    Wolff, M.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2007, 112 (E5)
  • [2] CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) on MRO (Mars Reconnaissance Orbiter)
    Murchie, S
    Arvidson, R
    Bedini, P
    Beisser, K
    Bibring, JP
    Bishop, J
    Boldt, J
    Choo, T
    Clancy, RT
    Darlington, EH
    Des Marais, D
    Espiritu, R
    Fasold, M
    Fort, D
    Green, R
    Guinness, E
    Hayes, J
    Hash, C
    Heffernan, K
    Hemmler, J
    Heyler, G
    Humm, D
    Hutchison, J
    Izenberg, N
    Lee, R
    Lees, J
    Lohr, D
    Malaret, E
    Martin, T
    Morris, R
    Mustard, J
    Rhodes, E
    Robinson, M
    Roush, T
    Schaefer, E
    Seagrave, G
    Silverglate, P
    Slavney, S
    Smith, M
    Strohbehn, K
    Taylor, H
    Thompson, P
    Tossman, B
    [J]. INSTRUMENTS, SCIENCE, AND METHODS FOR GEOSPACE AND PLANETARY REMOTE SENSING, 2004, 5660 : 66 - 77
  • [3] Hydrated silicate minerals on mars observed by the Mars reconnaissance orbiter CRISM instrument
    Mustard, John F.
    Murchie, S. L.
    Pelkey, S. M.
    Ehlmann, B. L.
    Milliken, R. E.
    Grant, J. A.
    Bibring, J. -P.
    Poulet, F.
    Bishop, J.
    Dobrea, E. Noe
    Roach, L.
    Seelos, F.
    Arvidson, R. E.
    Wiseman, S.
    Green, R.
    Hash, C.
    Humm, D.
    Malaret, E.
    McGovern, J. A.
    Seelos, K.
    Clancy, T.
    Clark, R.
    Des Marais, D.
    Izenberg, N.
    Knudson, A.
    Langevin, Y.
    Martin, T.
    McGuire, P.
    Morris, R.
    Robinson, M.
    Roush, T.
    Smith, M.
    Swayze, G.
    Taylor, H.
    Titus, T.
    Wolff, M.
    [J]. NATURE, 2008, 454 (7202) : 305 - 309
  • [4] Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument
    John F. Mustard
    S. L. Murchie
    S. M. Pelkey
    B. L. Ehlmann
    R. E. Milliken
    J. A. Grant
    J.-P. Bibring
    F. Poulet
    J. Bishop
    E. Noe Dobrea
    L. Roach
    F. Seelos
    R. E. Arvidson
    S. Wiseman
    R. Green
    C. Hash
    D. Humm
    E. Malaret
    J. A. McGovern
    K. Seelos
    T. Clancy
    R. Clark
    D. D. Marais
    N. Izenberg
    A. Knudson
    Y. Langevin
    T. Martin
    P. McGuire
    R. Morris
    M. Robinson
    T. Roush
    M. Smith
    G. Swayze
    H. Taylor
    T. Titus
    M. Wolff
    [J]. Nature, 2008, 454 : 305 - 309
  • [5] System design of the CRISM (compact reconnaissance imaging spectrometer for Mars) hyperspectral imager
    Silverglate, PR
    Fort, DE
    Hopkins, J
    [J]. IMAGING SPECTROMETRY IX, 2003, 5159 : 283 - 290
  • [6] COMPACT RECONNAISSANCE IMAGING SPECTROMETER FOR MARS (CRISM)
    Frink, Kaiem
    Hayden, Linda
    LeCompte, Malcom
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 4078 - 4079
  • [7] Study of phyllosilicates and carbonates from the Capri Chasma region of Valles Marineris on Mars based on Mars Reconnaissance Orbiter-Compact Reconnaissance Imaging Spectrometer for Mars (MRO-CRISM) observations
    Jain, Nirmala
    Chauhan, Prakash
    [J]. ICARUS, 2015, 250 : 7 - 17
  • [8] Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) south polar mapping: First Mars year of observations
    Brown, Adrian J.
    Calvin, Wendy M.
    McGuire, Patrick C.
    Murchie, Scott L.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2010, 115
  • [9] Contribution of Mars Odyssey GRS and Mars Reconnaissance Orbiter CRISM at Elysium Planitia: A case of mistaken identity
    Page, David P.
    [J]. PLANETARY AND SPACE SCIENCE, 2010, 58 (10) : 1404 - 1405
  • [10] Surface Kinetic Temperatures and Nontronite Single Scattering Albedo Spectra From Mars Reconnaissance Orbiter CRISM Hyperspectral Imaging Data Over Glen Torridon, Gale Crater, Mars
    He, L.
    Arvidson, R. E.
    O'Sullivan, J. A.
    Morris, R., V
    Condus, T.
    Hughes, M. N.
    Powell, K. E.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2022, 127 (09)