Optimal Automatic Train Operation Via Deep Reinforcement Learning

被引:0
|
作者
Zhou, Rui [1 ]
Song, Shiji [2 ]
机构
[1] Lille 1 Univ, Sch Econ, Lille, France
[2] Tsinghua Univ, Sch Automat, Beijing, Peoples R China
关键词
deep deterministic policy gradient; energy efficiency; automatic train operation; OPTIMIZATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The energy consumption occupies a considerable part in the total cost of the high-speed train operation. This paper focuses on minimizing the energy consumption of high-speed train by providing an optimal trajectory planning method. In this case, several other conditions including punctuality standard, comfort standard and varying speed limitation are taken into consideration in order to systematically evaluate the performance of a designed trajectory. The air resistance related to the current speed of the train and the regenerative braking system related to the braking force enhance the difficulty o ft he trajectory planning problem. In previous studies of trajectory planning, either the effort produced by the high-speed train or the distance is regarded as a discrete variable, while the modern train usually provides continuous effort. This paper will propose an algorithm to deal with the trajectory planning problem mentioned based on the Deep Deterministic Policy Gradient.
引用
收藏
页码:103 / 108
页数:6
相关论文
共 50 条
  • [1] Deep Reinforcement Learning for Energy-efficient Train Operation of Automatic Driving
    Meng, Xianglin
    Wang, He
    Lin, Mu
    Zhou, Yonghua
    [J]. 2020 IEEE 8TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2020, : 123 - 126
  • [2] Velocity Regulation for Automatic Train Operation via Meta-Reinforcement Learning
    Zhao, Feiran
    You, Keyou
    Fan, Yunxin
    Yan, Gang
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1969 - 1974
  • [3] Deep Reinforcement Learning for Optimal Hydropower Reservoir Operation
    Xu, Wei
    Meng, Fanlin
    Guo, Weisi
    Li, Xia
    Fu, Guangtao
    [J]. JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2021, 147 (08)
  • [4] Solving the train dispatching problem via deep reinforcement learning
    Agasucci, Valerio
    Grani, Giorgio
    Lamorgese, Leonardo
    [J]. JOURNAL OF RAIL TRANSPORT PLANNING & MANAGEMENT, 2023, 26
  • [5] Automatic Bug Triaging via Deep Reinforcement Learning
    Liu, Yong
    Qi, Xuexin
    Zhang, Jiali
    Li, Hui
    Ge, Xin
    Ai, Jun
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (07):
  • [6] Application of Deep Reinforcement Learning in Optimal Operation of Distribution Network
    Hu, Weihao
    Cao, Di
    Huang, Qi
    Zhang, Bin
    Li, Sichen
    Chen, Zhe
    [J]. Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2023, 47 (14): : 174 - 191
  • [7] Optimal Operation of Cryogenic Calorimeters Through Deep Reinforcement Learning
    G. Angloher
    S. Banik
    G. Benato
    A. Bento
    A. Bertolini
    R. Breier
    C. Bucci
    J. Burkhart
    L. Canonica
    A. D’Addabbo
    S. Di Lorenzo
    L. Einfalt
    A. Erb
    F. v. Feilitzsch
    S. Fichtinger
    D. Fuchs
    A. Garai
    V. M. Ghete
    P. Gorla
    P. V. Guillaumon
    S. Gupta
    D. Hauff
    M. Ješkovský
    J. Jochum
    M. Kaznacheeva
    A. Kinast
    S. Kuckuk
    H. Kluck
    H. Kraus
    A. Langenkämper
    M. Mancuso
    L. Marini
    B. Mauri
    L. Meyer
    V. Mokina
    K. Niedermayer
    M. Olmi
    T. Ortmann
    C. Pagliarone
    L. Pattavina
    F. Petricca
    W. Potzel
    P. Povinec
    F. Pröbst
    F. Pucci
    F. Reindl
    J. Rothe
    K. Schäffner
    J. Schieck
    S. Schönert
    [J]. Computing and Software for Big Science, 2024, 8 (1)
  • [8] Automatic Face Aging in Videos via Deep Reinforcement Learning
    Duong, Chi Nhan
    Luu, Khoa
    Quach, Kha Gia
    Nguyen, Nghia
    Patterson, Eric
    Bui, Tien D.
    Le, Ngan
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 10005 - 10014
  • [9] Optimal Operation of Integrated Energy System Based on Deep Reinforcement Learning
    Zhang, Fangchi
    Zhou, Fan
    Zhao, Jun
    Wang, Wei
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 149 - 154
  • [10] Optimal Operation of a Microgrid with Hydrogen Storage Based on Deep Reinforcement Learning
    Zhu, Zhenshan
    Weng, Zhimin
    Zheng, Hailin
    [J]. ELECTRONICS, 2022, 11 (02)