Controlled growth of hematite (α-Fe2O3) nanorod array on fluorine doped tin oxide: Synthesis and photoelectrochemical properties

被引:84
|
作者
Mulmudi, H. K. [1 ]
Mathews, N. [1 ]
Dou, X. C. [1 ]
Xi, L. F. [1 ]
Pramana, S. S. [1 ]
Lam, Y. M. [1 ]
Mhaisalkar, S. G. [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore, Singapore
[2] Nanyang Technol Univ, Energy Res Inst NTU ERI N, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
Hematite nanorods; Electrochemical impedance spectroscopy; Photoelectrochemical solar cell; Minority charge carriers; ELECTRODES; SIZE;
D O I
10.1016/j.elecom.2011.06.008
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Hematite nanorods were grown on fluorine doped tin oxide (FTO) substrates by hydrothermal means utilizing urea as a pH regulating agent. XRD for nanorods revealed pure hematite phase after annealing at 500 degrees C for 30 min with preferential orientation in the [110] direction. Electrochemical impedance spectroscopy was carried out to investigate the electrical properties. Using Mott-Schottky analysis, charge carrier density was estimated to be 5.62 x 10(19) cm(-3) in the hematite nanorod array. Among the nanostructures, the n-type hematite nanorod array showed the best conversion efficiency among the samples studied in a two electrode photoelectrochemical cell. Photocurrent measurements versus light intensity were performed to investigate the device performance and the limiting factors to the performance were attributed to the short diffusion length of minority charge carriers. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:951 / 954
页数:4
相关论文
共 50 条
  • [1] α-Fe2O3 on patterned fluorine doped tin oxide for efficient photoelectrochemical water splitting
    Kim, Kwanghyun
    Kim, Ik-Hee
    Yoon, Ki-Yong
    Lee, Jeongyeop
    Jang, Ji-Hyun
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (15) : 7706 - 7709
  • [2] Synthesis and properties of iridium-doped hematite (α-Fe2O3)
    Krehula, Stjepko
    Stefanic, Goran
    Zadro, Kreso
    Krehula, Ljerka Kratofil
    Marcius, Marijan
    Music, Svetozar
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 545 : 200 - 209
  • [3] Photoelectrochemical Performances of Hematite (α-Fe2O3) Films Doped with Various Metals
    Bak, Ayoung
    Choi, Sung Kyu
    Park, Hyunwoong
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2015, 36 (05): : 1487 - 1494
  • [4] Synthesis of α-Fe2O3 nanorod/graphene oxide composites and their tribological properties
    Song, Hao-Jie
    Jia, Xiao-Hua
    Li, Na
    Yang, Xiao-Fei
    Tang, Hua
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (03) : 895 - 902
  • [5] Synthesis and photoelectrochemical cell properties of vertically grown α-Fe2O3 nanorod arrays on a gold nanorod substrate
    Mao, Aiming
    Han, Gui Young
    Park, Jong Hyeok
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (11) : 2247 - 2250
  • [6] Morphology-controlled synthesis of Ti-doped α-Fe2O3 nanorod arrays as an efficient photoanode for photoelectrochemical applications
    Qiongke Wang
    Yanfeng Chen
    Jiajie Xu
    Yue Situ
    Hong Huang
    Research on Chemical Intermediates, 2018, 44 : 2365 - 2378
  • [7] Morphology-controlled synthesis of Ti-doped α-Fe2O3 nanorod arrays as an efficient photoanode for photoelectrochemical applications
    Wang, Qiongke
    Chen, Yanfeng
    Xu, Jiajie
    Situ, Yue
    Huang, Hong
    RESEARCH ON CHEMICAL INTERMEDIATES, 2018, 44 (04) : 2365 - 2378
  • [8] Synthesis, structural, and microwave absorption properties of hematite (α-Fe2O3) and maghemite (γ-Fe2O3)
    Husain, H.
    Nurhayati, N.
    Susanto, A.
    Sujiono, E. H.
    Taryana, Y.
    Krisdayanti, K.
    PHYSICA SCRIPTA, 2023, 98 (07)
  • [9] Synthesis and vibrational properties of hematite (α-Fe2O3) nanoparticles
    Ramesh, R.
    Sohila, S.
    Muthamizhchelvan, C.
    Rajalakshmi, M.
    Ramya, S.
    Ponnusamy, S.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2011, 22 (09) : 1357 - 1360
  • [10] Synthesis and vibrational properties of hematite (α-Fe2O3) nanoparticles
    R. Ramesh
    S. Sohila
    C. Muthamizhchelvan
    M. Rajalakshmi
    S. Ramya
    S. Ponnusamy
    Journal of Materials Science: Materials in Electronics, 2011, 22 : 1357 - 1360