Imaging brain extended sources from EEG/MEG based on variation sparsity using automatic relevance determination

被引:8
|
作者
Liu, Ke [1 ]
Yu, Zhu Liang [2 ]
Wu, Wei [2 ,3 ]
Gu, Zhenghui [2 ]
Li, Yuanqing [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China
[2] South China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510641, Peoples R China
[3] Stanford Univ, Dept Psychiat & Behav Sci, Stanford, CA 94305 USA
基金
中国国家自然科学基金;
关键词
EEG/MEG source imaging; Variation sparsity; Automatic relevance determination (ARD); ADMM; CORTICAL CURRENT-DENSITY; SOURCE RECONSTRUCTION; ELECTROMAGNETIC TOMOGRAPHY; QUANTITATIVE-ANALYSIS; SOURCE LOCALIZATION; BAYESIAN FRAMEWORK; EEG; MEG; ALGORITHM; INFERENCE;
D O I
10.1016/j.neucom.2020.01.038
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Estimating the extents and localizations of extended sources from noninvasive EEG/MEG signals is challenging. In this paper, we have proposed a fully data driven source imaging method, namely Variation Sparse Source Imaging based on Automatic Relevance Determination (VSSI-ARD), to reconstruct extended cortical activities. VSSI-ARD explores the sparseness of current sources on the variation domain by employing ARD prior under empirical Bayesian framework. With convex analysis, the sources are efficiently obtained by solving a series of reweighting L-21-norm regularization problems with ADMM. By virtue of the iterative reweighting process and sparse signal processing techniques, VSSI-ARD gets rid of the small amplitude dipoles that are more probably outside the extent of underlying sources. With the sparsity enforced on the edges using ARD prior, the estimations show clear boundaries between active and background regions without subjective thresholds. Validation with both simulated and human experimental data indicates that VSSI-ARD not only estimates the localizations of sources, but also provides relatively useful and accurate information about the extents of cortical activities. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 145
页数:14
相关论文
共 50 条
  • [1] Imaging EEG Extended Sources Based on Variation Sparsity with L1-norm Residual
    Xu, Furong
    Liu, Ke
    Deng, Xin
    Wang, Guoyin
    [J]. BRAIN INFORMATICS, 2019, 11976 : 95 - 104
  • [2] Localization of extended brain sources from EEG/MEG: The ExSo-MUSIC approach
    Birot, Gwenael
    Albera, Laurent
    Wendling, Fabrice
    Merlet, Isabelle
    [J]. NEUROIMAGE, 2011, 56 (01) : 102 - 113
  • [3] FUNCTIONAL BRAIN IMAGING BASED ON EEG AND MEG
    Thomas R. KN SCHE
    [J]. 神经解剖学杂志, 2001, (S1) : 81 - 85
  • [4] MEG and EEG dipole clusters from extended cortical sources
    Fuchs M.
    Kastner J.
    Tech R.
    Wagner M.
    Gasca F.
    [J]. Biomedical Engineering Letters, 2017, 7 (3) : 185 - 191
  • [5] Investigation of EEG and MEG Source Imaging Accuracy in Reconstructing Extended Cortical Sources
    Ding, Lei
    Yuan, Han
    [J]. 2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 7013 - 7016
  • [6] EEG Extended Source Imaging with Variation Sparsity and Lp-Norm Constraint
    Peng, Shu
    Qi, Feifei
    Yu, Hong
    Liu, Ke
    [J]. ARTIFICIAL INTELLIGENCE, CICAI 2023, PT II, 2024, 14474 : 500 - 511
  • [7] Imaging brain source extent from EEG/MEG by means of an iteratively reweighted edge sparsity minimization (IRES) strategy
    Sohrabpour, Abbas
    Lu, Yunfeng
    Worrell, Gregory
    He, Bin
    [J]. NEUROIMAGE, 2016, 142 : 27 - 42
  • [8] SISSY: An efficient and automatic algorithm for the analysis of EEG sources based on structured sparsity
    Becker, H.
    Albera, L.
    Comon, P.
    Nunes, J. -C.
    Gribonval, R.
    Fleureau, J.
    Guillotel, P.
    Merlet, I.
    [J]. NEUROIMAGE, 2017, 157 : 157 - 172
  • [9] Bayesian brain source imaging based on combined MEG/EEG and fMRI using MCMC
    Jun, Sung C.
    George, John S.
    Kim, Woohan
    Pare-Blagoev, Juliana
    Plis, Sergey
    Ranken, Doug M.
    Schmidt, David M.
    [J]. NEUROIMAGE, 2008, 40 (04) : 1581 - 1594
  • [10] Automatic relevance determination based hierarchical Bayesian MEG inversion in practice
    Nummenmaa, Aapo
    Auranen, Toni
    Haemaelaeinen, Matti S.
    Jaeaeskelaeinen, Iiro P.
    Sams, Mikko
    Vehtari, Aki
    Lampmen, Jouko
    [J]. NEUROIMAGE, 2007, 37 (03) : 876 - 889