Firm non-expansive mappings in weak metric spaces

被引:0
|
作者
Gutierrez, Armando W. [1 ,2 ]
Walsh, Cormac [1 ,2 ]
机构
[1] Ecole Polytech, CNRS, INRIA, F-91128 Palaiseau, France
[2] Ecole Polytech, CNRS, CMAP, F-91128 Palaiseau, France
关键词
Non-expansive mapping; Weak metric; Firmly non-expansive; Firm non-expansive; Metric functional; ASYMPTOTIC-BEHAVIOR; NONEXPANSIVE-MAPPINGS; HOROFUNCTION BOUNDARY; HILBERT;
D O I
10.1007/s00013-022-01759-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of a firm non-expansive mapping in weak metric spaces, extending previous work for Banach spaces and certain geodesic spaces. We prove that, for firm non-expansive mappings, the minimal displacement, the linear rate of escape, and the asymptotic step size are all equal. This generalises a theorem by Reich and Shafrir.
引用
收藏
页码:389 / 400
页数:12
相关论文
共 50 条
  • [1] Firm non-expansive mappings in weak metric spaces
    Armando W. Gutiérrez
    Cormac Walsh
    Archiv der Mathematik, 2022, 119 : 389 - 400
  • [2] ON NON-EXPANSIVE MAPPINGS OF BANACH SPACES
    EDELSTEIN, M
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1964, 60 (03): : 439 - &
  • [3] Remark on fundamentally non-expansive mappings in hyperbolic spaces
    Suanoom, Cholatis
    Klin-eam, Chakkrid
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 1952 - 1956
  • [4] Weak and strong convergence of a new scheme for two non-expansive mappings in Hilbert spaces
    Miao, Yu
    Song, Yisheng
    APPLICABLE ANALYSIS, 2008, 87 (05) : 567 - 574
  • [5] Linearizability of non-expansive semigroup actions on metric spaces
    Schroeder, Lutz
    TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (14) : 1576 - 1579
  • [6] Symmetric orthogonality and non-expansive projections in metric spaces
    Kell, Martin
    MANUSCRIPTA MATHEMATICA, 2020, 161 (1-2) : 141 - 159
  • [7] Symmetric orthogonality and non-expansive projections in metric spaces
    Martin Kell
    manuscripta mathematica, 2020, 161 : 141 - 159
  • [8] Iterative approximation of fixed points of a general class of non-expansive mappings in hyperbolic metric spaces
    Bera, Ashis
    Chanda, Ankush
    Dey, Lakshmi Kanta
    Ali, Javid
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 1817 - 1839
  • [9] Iterative approximation of fixed points of a general class of non-expansive mappings in hyperbolic metric spaces
    Ashis Bera
    Ankush Chanda
    Lakshmi Kanta Dey
    Javid Ali
    Journal of Applied Mathematics and Computing, 2022, 68 : 1817 - 1839
  • [10] ON FIRMLY NON-EXPANSIVE MAPPINGS
    Gordon, Joseph Frank
    Gyasi, Esther Opoku
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2021, 19 (04): : 512 - 517