Subgradient projection methods extended to monotone bilevel equilibrium problems in Hilbert spaces

被引:10
|
作者
Anh, Pham Ngoc [1 ]
Tu, Ho Phi [2 ]
机构
[1] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[2] Hai Phong Univ, Dept Math, Haiphong, Vietnam
关键词
Pseudomonotone; Bilevel equilibrium problem; Subgradient projection method; Equilibrium constraints; STRONG-CONVERGENCE THEOREM; EXTRAGRADIENT ALGORITHM; DESCENT METHOD;
D O I
10.1007/s11075-020-00878-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by basing on the inexact subgradient and projection methods presented by Santos et al. (Comput. Appl. Math. 30: 91-107, 2011), we develop subgradient projection methods for solving strongly monotone equilibrium problems with pseudomonotone equilibrium constraints. The problem usually is called monotone bilevel equilibrium problems. We show that this problem can be solved by a simple and explicit subgradient method. The strong convergence for the proposed algorithms to the solution is guaranteed under certain assumptions in a real Hilbert space. Numerical illustrations are given to demonstrate the performances of the algorithms.
引用
收藏
页码:55 / 74
页数:20
相关论文
共 50 条
  • [1] Subgradient projection methods extended to monotone bilevel equilibrium problems in Hilbert spaces
    Pham Ngoc Anh
    Ho Phi Tu
    Numerical Algorithms, 2021, 86 : 55 - 74
  • [2] New subgradient extragradient methods for solving monotone bilevel equilibrium problems
    Pham Ngoc Anh
    Le Thi Hoai An
    OPTIMIZATION, 2019, 68 (11) : 2097 - 2122
  • [3] GENERAL IMPLICIT SUBGRADIENT EXTRAGRADIENT METHODS FOR MONOTONE BILEVEL EQUILIBRIUM PROBLEMS
    Ceng, Lu-Chuan
    Zhao, Xiaopeng
    Zhu, Li-jun
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2022, 84 (03): : 3 - 20
  • [4] GENERAL IMPLICIT SUBGRADIENT EXTRAGRADIENT METHODS FOR MONOTONE BILEVEL EQUILIBRIUM PROBLEMS
    Ceng, Lu-Chuan
    Zhao, Xiaopeng
    Zhu, Li-Jun
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2022, 84 (03): : 3 - 20
  • [5] ON INERTIAL SUBGRADIENT EXTRAGRADIENT RULE FOR MONOTONE BILEVEL EQUILIBRIUM PROBLEMS
    Ceng, Lu-chuan
    Petrusel, A. D. R. I. A. N.
    Qin, X.
    Yao, J. C.
    FIXED POINT THEORY, 2023, 24 (01): : 101 - 126
  • [6] Iterative Methods for Equilibrium Problems and Monotone Inclusion Problems in Hilbert Spaces
    Wu, Huan-chun
    Cheng, Cao-zong
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [7] Extragradient subgradient methods for solving bilevel equilibrium problems
    Tadchai Yuying
    Bui Van Dinh
    Do Sang Kim
    Somyot Plubtieng
    Journal of Inequalities and Applications, 2018
  • [8] A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces
    Strodiot, Jean Jacques
    Phan Tu Vuong
    Thi Thu Van Nguyen
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 64 (01) : 159 - 178
  • [9] Extragradient subgradient methods for solving bilevel equilibrium problems
    Yuying, Tadchai
    Bui Van Dinh
    Kim, Do Sang
    Plubtieng, Somyot
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [10] A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces
    Jean Jacques Strodiot
    Phan Tu Vuong
    Thi Thu Van Nguyen
    Journal of Global Optimization, 2016, 64 : 159 - 178