Integrability of Van der Pol-Duffing oscillator system in three-dimensional vector field

被引:3
|
作者
Hussein, Niazy Hady [1 ]
Amen, Azad Ibrahim [2 ,3 ]
机构
[1] Soran Univ Erbil, Dept Math, Fac Sci, Erbil, Iraq
[2] Salahaddin Univ Erbil, Dept Math, Basic Educ Coll, Erbil, Iraq
[3] Raparin Univ Ranya, Dept Math, Basic Educ Coll, Ranya, Iraq
关键词
analytic first integrals; Darboux first integrals; exponential factors; invariant algebraic surfaces; 3D Van der Pol-Duffing system; INVARIANT ALGEBRAIC-CURVES; SYNCHRONIZATION;
D O I
10.1002/mma.7876
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we focus on studying the integrability of the following three-dimensional Van der Pol-Duffing system (x) over dot =-m(x(3) - mu x - y), (y) over dot = x - y - z, (z) over dot = beta y. More precisely, if m beta not equal 0, then the above system has no analytic and nor Darboux first integrals at the neighborhood of the origin. Also, the stability and instability of the singular points are employed to investigate the C-1 integrability of this type of system.
引用
收藏
页码:1597 / 1611
页数:15
相关论文
共 50 条
  • [1] Darboux integrability of a Mathieu-van der Pol-Duffing oscillator
    Cen, Zhihao
    Xie, Feng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 70
  • [2] Bifurcations of the van der Pol-Duffing oscillator
    Pusenjak, R
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2003, 49 (7-8): : 370 - 384
  • [3] A van der Pol-Duffing Oscillator with Indefinite Degree
    Chen, Hebai
    Jin, Jie
    Wang, Zhaoxia
    Zhang, Baodong
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
  • [4] On bifurcations and chaos in the Van der Pol-Duffing oscillator
    Bykov, VV
    RADIOTEKHNIKA I ELEKTRONIKA, 1997, 42 (09): : 1084 - 1096
  • [5] A van der Pol-Duffing Oscillator with Indefinite Degree
    Hebai Chen
    Jie Jin
    Zhaoxia Wang
    Baodong Zhang
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [6] FREQUENCY RESPONSE OF A VAN DER POL-DUFFING OSCILLATOR
    HAAS, VB
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1971, 59 (02): : 334 - &
  • [7] Multistability and organization of periodicity in a Van der Pol-Duffing oscillator
    Wiggers, Vinicius
    Rech, Paulo C.
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 632 - 637
  • [8] MULTISTABILITY AND RARE ATTRACTORS IN VAN DER POL-DUFFING OSCILLATOR
    Chudzik, A.
    Perlikowski, P.
    Stefanski, A.
    Kapitaniak, T
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (07): : 1907 - 1912
  • [9] Suppression of hysteresis in a forced van der Pol-Duffing oscillator
    Fahsi, Abdelhak
    Belhaq, Mohamed
    Lakrad, Faouzi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) : 1609 - 1616
  • [10] Three-dimensional chaotic autonomous van der pol-duffing type oscillator and its fractional-order form
    Kuiate, Gaetan Fautso
    Kingni, Sifeu Takougang
    Tamba, Victor Kamdoum
    Talla, Pierre Kisito
    CHINESE JOURNAL OF PHYSICS, 2018, 56 (05) : 2560 - 2573