Completeness for flat modal fixpoint logics

被引:17
|
作者
Santocanale, Luigi [2 ]
Venema, Yde [1 ]
机构
[1] Univ Amsterdam, Inst Log Language & Computat, NL-1098 XH Amsterdam, Netherlands
[2] Univ Aix Marseille 1, Lab Informat Fondamentale Marseille, F-13453 Marseille 13, France
关键词
Fixpoint logic; Modal logic; Axiomatization; Completeness; Modal algebra; Representation theorem; ALGEBRAS;
D O I
10.1016/j.apal.2010.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper exhibits a general and uniform method to prove axiomatic completeness for certain modal fixpoint logics. Given a set Gamma of modal formulas of the form gamma(chi, p(1), ..., p(n)), where chi occurs only positively in gamma, we obtain the flat modal fixpoint language L-#(Gamma) by adding to the language of polymodal logic a connective #(gamma) for each gamma is an element of Gamma. The term #(gamma) (phi(1), ..., phi(n)) is meant to be interpreted as the least fixed point of the functional interpretation of the term gamma(chi, phi(1), ..., phi(n)). We consider the following problem: given Gamma, construct an axiom system which is sound and complete with respect to the concrete interpretation of the language L-#(Gamma) on Kripke structures. We prove two results that solve this problem. First, let K-#(Gamma) be the logic obtained from the basic polymodal K by adding a Kozen-Park style fixpoint axiom and a least fixpoint rule, for each fixpoint connective #(gamma). Provided that each indexing formula gamma satisfies a certain syntactic criterion, we prove this axiom system to be complete. Second, addressing the general case, we prove the soundness and completeness of an extension K-#(+) (Gamma) of K-#(Gamma). This extension is obtained via an effective procedure that, given an indexing formula gamma as input, returns a finite set of axioms and derivation rules for #(gamma), of size bounded by the length of gamma. Thus the axiom system K-#(+) (Gamma) is finite whenever Gamma is finite. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 82
页数:28
相关论文
共 50 条
  • [1] Completeness for flat modal fixpoint logics (Extended abstract)
    Santocanale, Luigi
    Venema, Yde
    LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, PROCEEDINGS, 2007, 4790 : 499 - +
  • [2] Completeness of Flat Coalgebraic Fixpoint Logics
    Schroeder, Lutz
    Venema, Yde
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2018, 19 (01)
  • [3] Flat modal fixpoint logics with the converse modality
    Enqvist, Sebastian
    JOURNAL OF LOGIC AND COMPUTATION, 2018, 28 (06) : 1065 - 1097
  • [4] A Solver for Modal Fixpoint Logics
    Friedmann, Oliver
    Lange, Martin
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2010, 262 : 99 - 111
  • [5] COMPLETENESS OF MONOTONIC MODAL LOGICS
    CHELLAS, BF
    MCKINNEY, A
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1975, 21 (04): : 379 - 383
  • [6] Completeness theorems for reactive modal logics
    Gabbay, Dov
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2012, 66 (1-4) : 81 - 129
  • [7] Hallden Completeness for Relevant Modal Logics
    Seki, Takahiro
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2015, 56 (02) : 333 - 350
  • [8] COMPLETENESS OF CHRONOLOGICAL LOGICS WITH MODAL OPERATORS
    NISHIMURA, H
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1979, 25 (06): : 487 - 496
  • [9] Completeness theorems for reactive modal logics
    Dov Gabbay
    Annals of Mathematics and Artificial Intelligence, 2012, 66 : 81 - 129
  • [10] Separating the Expressive Power of Propositional Dynamic and Modal Fixpoint Logics
    Alsmann, Eric
    Bruse, Florian
    Lange, Martin
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2021, (339): : 10 - 26