Blowup for ut=Δu+|delu|2u from Rn into Rm

被引:0
|
作者
Hirata, D [1 ]
机构
[1] Sci Univ Tokyo, Fac Sci & Technol, Dept Math, Chiba 2788510, Japan
关键词
blowup; parabolic system; Cauchy problem;
D O I
10.1090/S0002-9939-05-07821-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we consider the global regularity of smooth solutions u = (u(1),..., u(m)) to the vector-valued Cauchy problem u(t) = Delta u + |del u|(2)u in R-n x [0,infinity), u(x, 0) = u(0)(x) in R-n. We show that if n, m >= 3, the gradient-blowup phenomenon occurs in finite time for suitably chosen u0 vanishing at infinity. We also present a simple example of the L-infinity-blowup solutions for |u(0)| = 1 + epsilon for any epsilon > 0, if m >= 2.
引用
收藏
页码:1823 / 1827
页数:5
相关论文
共 50 条