KIOPS: A fast adaptive Krylov subspace solver for exponential integrators

被引:47
|
作者
Gaudreault, Stephane [1 ]
Rainwater, Greg [2 ]
Tokman, Mayya [2 ]
机构
[1] Environm & Changement Climat Canada, Rech Previs Numer Atmospher, 2121 Route Transcanadienne, Dorval, PQ H9P 1J3, Canada
[2] Univ Calif, Sch Nat Sci, 5200 N Lake Rd, Merced, CA 95343 USA
基金
美国国家科学基金会;
关键词
Adaptive Krylov subspace methods; Incomplete orthogonalization; Time integration; Exponential integrators; phi-functions; Matrix exponential; PROPAGATION ITERATIVE METHODS; TIME INTEGRATION; MATRIX; APPROXIMATIONS; IMPLEMENTATION; INSTABILITIES; EQUATIONS; SCHEMES; PARAEXP; SYSTEMS;
D O I
10.1016/j.jcp.2018.06.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a new algorithm KIOPS for computing linear combinations of phi-functions that appear in exponential integrators. This algorithm is suitable for large-scale problems in computational physics where little or no information about the spectrum or norm of the Jacobian matrix is known a priori. We first show that such problems can be solved efficiently by computing a single exponential of a modified matrix. Then our approach is to compute an appropriate basis for the Krylov subspace using the incomplete orthogonalization procedure and project the matrix exponential on this subspace. We also present a novel adaptive procedure that significantly reduces the computational complexity of exponential integrators. Our numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm phipm. Crown Copyright (C) 2018 Published by Elsevier Inc.
引用
收藏
页码:236 / 255
页数:20
相关论文
共 50 条
  • [1] KIOPS: A fast adaptive Krylov subspace solver for exponential integrators (vol 372, pg 236, 2018)
    Gaudreault, Stephane
    Rainwater, Greg
    Tokman, Mayya
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 441
  • [2] Exploring the Exponential Integrators with Krylov Subspace Algorithms for Nonlinear Circuit Simulation
    Wang, Xinyuan
    Zhuang, Hao
    Cheng, Chung-Kuan
    [J]. 2017 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2017, : 163 - 168
  • [3] Algorithm 919: A Krylov Subspace Algorithm for Evaluating the φ-Functions Appearing in Exponential Integrators
    Niesen, Jitse
    Wright, Will M.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2012, 38 (03):
  • [4] Exponential Krylov peer integrators
    Weiner, Ruediger
    Bruder, Juergen
    [J]. BIT NUMERICAL MATHEMATICS, 2016, 56 (01) : 375 - 393
  • [5] Exponential Krylov peer integrators
    Rüdiger Weiner
    Jürgen Bruder
    [J]. BIT Numerical Mathematics, 2016, 56 : 375 - 393
  • [6] UNIFORM APPROXIMATION OF φ-FUNCTIONS IN EXPONENTIAL INTEGRATORS BY A RATIONAL KRYLOV SUBSPACE METHOD WITH SIMPLE POLES
    Goeckler, Tanja
    Grimm, Volker
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (04) : 1467 - 1489
  • [7] CONVERGENCE ANALYSIS OF AN EXTENDED KRYLOV SUBSPACE METHOD FOR THE APPROXIMATION OF OPERATOR FUNCTIONS IN EXPONENTIAL INTEGRATORS
    Goeckler, Tanja
    Grimm, Volker
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (04) : 2189 - 2213
  • [8] Block Krylov subspace methods for approximating the linear combination of φ-functions arising in exponential integrators
    Cong, Yuhao
    Li, Dongping
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (04) : 846 - 855
  • [9] ADAPTIVE RATIONAL KRYLOV METHODS FOR EXPONENTIAL RUNGE--KUTTA INTEGRATORS
    Bergermann, Kai
    Stoll, Martin
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2024, 45 (01) : 744 - 770
  • [10] Adaptive detectors in the Krylov subspace
    Liu WeiJian
    Xie WenChong
    Li RongFeng
    Wang ZeTao
    Wang YongLiang
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (10) : 1 - 11