Emulation of environmental models using polynomial chaos expansion

被引:8
|
作者
Massoud, Elias C. [1 ,2 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[2] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA
关键词
Model emulation; Surrogate modeling; Polynomial chaos expansion; Sensitivity analysis; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; SENSITIVITY-ANALYSIS; PARAMETER-ESTIMATION; REGRESSION METAMODEL; DATA ASSIMILATION; PART I; SIMULATION; UNCERTAINTY; DYNAMICS;
D O I
10.1016/j.envsoft.2018.10.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper investigates the applicability of model emulation to speed up simulation time of CPU intensive environmental models. Polynomial chaos expansion (PCE) emulators are constructed for three case studies of increasing complexity. The level of emulator training and the order of polynomial necessary to sufficiently build accurate emulators for each model are investigated. Although the PCE emulators shown here do not approximate well the outputs of parameter rich models (80 + parameters), results demonstrate that the emulators mimic closely outputs of relatively simple, low dimensional, simulation models (15 parameters or less). Furthermore, the PCE emulators are tested with applications such as Global Sensitivity Analysis (GSA). Results illustrate the advantages and drawbacks of using classical PCE emulators for treating computational limitation of complex environmental models.
引用
收藏
页码:421 / 431
页数:11
相关论文
共 50 条
  • [1] Polynomial chaos expansion models for SHM under environmental variability
    Spiridonakos, M.
    Chatzi, E.
    EURODYN 2014: IX INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, 2014, : 2393 - 2398
  • [2] Bayesian inference of earthquake rupture models using polynomial chaos expansion
    Cruz-Jimenez, Hugo
    Li, Guotu
    Mai, Paul Martin
    Hoteit, Ibrahim
    Knio, Omar M.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (07) : 3071 - 3088
  • [3] Polynomial Chaos Expansion Approach to Interest Rate Models
    Di Persio, Luca
    Pellegrini, Gregorio
    Bonollo, Michele
    JOURNAL OF PROBABILITY AND STATISTICS, 2015, 2015
  • [4] On Moment Estimation From Polynomial Chaos Expansion Models
    Lefebvre, Tom
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (05): : 1519 - 1524
  • [5] Emulation of CPU-demanding reactive transport models: a comparison of Gaussian processes, polynomial chaos expansion, and deep neural networks
    Laloy, Eric
    Jacques, Diederik
    COMPUTATIONAL GEOSCIENCES, 2019, 23 (05) : 1193 - 1215
  • [6] Emulation of CPU-demanding reactive transport models: a comparison of Gaussian processes, polynomial chaos expansion, and deep neural networks
    Eric Laloy
    Diederik Jacques
    Computational Geosciences, 2019, 23 : 1193 - 1215
  • [7] Polynomial Chaos Expansion: Efficient Evaluation and Estimation of Computational Models
    Fehrle, Daniel
    Heiberger, Christopher
    Huber, Johannes
    COMPUTATIONAL ECONOMICS, 2025, 65 (02) : 1083 - 1146
  • [8] MINIMUM DIVERGENCE FILTERING USING A POLYNOMIAL CHAOS EXPANSION
    Schmid, Christine L.
    DeMars, Kyle J.
    ASTRODYNAMICS 2017, PTS I-IV, 2018, 162 : 1909 - 1928
  • [9] Magnetometric resistivity tomography using chaos polynomial expansion
    Vu, M. T.
    Jardani, A.
    Revil, A.
    Jessop, M.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 221 (03) : 1469 - 1483
  • [10] Surrogate accelerated sampling of reservoir models with complex structures using sparse polynomial chaos expansion
    Bazargan, Hamid
    Christie, Mike
    Elsheikh, Ahmed H.
    Ahmadi, Mohammad
    ADVANCES IN WATER RESOURCES, 2015, 86 : 385 - 399